Name:_

Let A and B be sets. Recall that a **binary relation** (or, more briefly, a **relation**) from A to B is a subset of $A \times B$. Elements of a relation R are usually written as ordered pairs of the form (a, b). Here, $R \subseteq A \times B$, and $(a, b) \in R$. We sometimes write a R b, meaning that a is related to b via R. If $(a, b) \notin R$, then we say a is not related to b. In the special case that A = B, then a relation $R \subseteq A \times A$ is called a relation on the set A.

Properties of Relations:

- 1. A relation R on a set A is called **reflexive** if $(a, a) \in R$ for every $a \in A$.
- 2. A relation R on a set A is called **symmetric** if whenever $(a, b) \in R$, $(b, a) \in R$ as well.
- 3. A relation R on a set A is called **antisymmetric** if whenever $(a, b) \in R$ and $(b, a) \in R$, then a = b.
- 4. A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Examples: Let $A = \{0, 1, 2, 3\}$, and consider the following relations on A:

- $R_1 = \{(0,1), (1,2), (2,3), (3,3)\}$
- $R_2 = \{(0,0), (0,1), (1,1), (1,2), (2,2), (2,3), (3,3)\}$
- $R_3 = \{(0,0), (1,1), (2,2), (3,3)\}$
- $R_4 = \{(1,2), (2,1), (1,1)\}$
- $R_5 = \{(0,0), (0,1), (1,0), (1,1), (2,2), (1,3), (3,1), (3,3)\}$
- 1. Which of these relations are reflexive?
- 2. Which of these relations are symmetric?
- 3. Which of these relations are antisymmetric?
- 4. Which of these relations are transitive?
- 5. Suppose A is the vertex set for a directed graph and the relation R is the set of directed edges. Draw the graphs of R_1 , R_2 , R_3 , R_4 , and R_5 .

6. Examine the graphs that you draw in problem #5. Explain how you could tell directly from the graph that a relation R is reflexive. How could you tell from the graph that R is symmetric? Antisymmetric? Transitive?

7. Find each of the following:

(a) $R_1 \cup R_3$

- (b) $R_1 \cap R_3$
- (c) $R_1 R_3$
- (d) $R_3 R_1$
- (e) $\overline{R_3}$.
- 8. Find the adjacency matrix M_{R_i} for R_1 , R_2 , R_3 , R_4 , and R_5 .