Name:

Recall:

Let $A = \{0, 1, 2, 3\}$, and consider the following relations on A:

- $R_1 = \{(0,1), (1,2), (2,3), (3,3)\}$
- $R_2 = \{(0,0), (0,1), (1,1), (1,2), (2,2), (2,3), (3,3)\}$
- $R_3 = \{(0,0), (1,1), (2,2), (3,3)\}$
- $R_4 = \{(1,2), (2,1), (1,1)\}$
- $R_5 = \{(0,0), (0,1), (1,0), (1,1), (2,2), (1,3), (3,1), (3,3)\}$

New Definition: Given two relations $R \subseteq A \times B$ and $S \subseteq B \times C$, the **composite relation** $S \circ R = \{(a, c) : a \in A, b \in B, c \in C \text{ such that } (a, b) \in R \text{ and } (b, c) \in S \}.$

Examples: $R_2 \circ R_1 = \{(0,1), (0,2), (1,2), (1,3), (2,3), (3,3)\}$ while $R_1 \circ R_1 = R^2 = \{(0,2), (1,3), (2,3), (3,3)\}$.

Note: If $R \subset A \times A$, we write $R \circ R = R^2$, and, more generally, we write $R^{n+1} = R^n \circ R$ for any $n \in \mathbb{N}$. Moreover, if $R^2 \subseteq R$, then R is transitive.

- 1. Last time, most of you were unable to correctly identify which of these relations are transitive and which are not. In fact, only R_3 is transitive.
 - (a) Find $R_3^2 = R_3 \circ R_3$ directly. Use this result to argue that R_3 is transitive.

(b) For each of the others, find a specific counterexample that demonstrates that the relation is **not** transitive.

(c) Use the Boolean product of binary matrices to find $M_{R_3 \circ R_3}$. Compare this matrix to the matrix M_{R_3} and argue that R_3 is transitive.

- 2. Suppose that R and S are relations on a set B. Further suppose that R and S are both reflexive.
 - (a) Is $R \cup S$ reflexive? Justify your answer.
 - (b) Is $R \cap S$ reflexive? Justify your answer.
 - (c) Is R S reflexive? Justify your answer.
 - (d) Is $R \circ S$ reflexive? Justify your answer.
 - (e) Is \overline{R} reflexive? Justify your answer.
- 3. Suppose that R and S are relations on a set B. Further suppose that R and S are both symmetric.
 (a) Is R∪S symmetric? Justify your answer.
 - (b) Is $R \cap S$ symmetric? Justify your answer.
 - (c) Is R S symmetric? Justify your answer.
 - (d) Is $R \circ S$ symmetric? Justify your answer.
 - (e) Is \overline{R} symmetric? Justify your answer.