Name:_

Cyclic Groups and the Center of a Group

Definition 22.7 Let G be a group. The **center** of G is the set $Z(G) = \{a \in G : ab = ba$ for all $b \in G\}$. In other words, the set of all elements that commute with every element in G.

- 1. Find the center of each of the following groups:
 - (a) \mathbb{Z}_{10}
 - (b) The group G of symmetries of an equilateral triangle
 - (c) The group G of symmetries of a square
- 2. Let G be a group with identity element e.
 - (a) Is e in Z(G)? Explain.
 - (b) Is Z(G) closed under the operation in G? Prove your answer.
 - (c) If $a \in Z(G)$, is $a^{-1} \in Z(G)$? Prove your answer.
 - (d) If Z(G) a subgroup of G? Explain. Is Z(G) Abelian?

Based on your work above, complete the statement of the following theorem:

Theorem 22.10 Let G be a group. The center of G is a(n) ______

Definition 22.13 Let G be a group, and let $a \in G$. The cyclic subgroup generated by a, denotes $\langle a \rangle$, is defined by $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$, or, if the group is written using additive notation, $\langle a \rangle = \{na : n \in \mathbb{Z}\}$.

Definition 22.14 A group G is cyclic group id $G = \langle a \rangle$ for some $a \in G$.

3. Explain why a cyclic group, as defined in Definition 22.13 satisfies each of the properties of a group.

- 4. In each of the following you are given a group G and an element a. List the elements of $\langle a \rangle$.
 - (a) $G = \mathbb{Z}_{10}, a = [3]$

(b) $G = \mathbb{U}_{10}, a = [3]$

- 5. Determine whether or not the following groups are cyclic groups.
 - (a) \mathbb{Z}_n (under the addition operation)
 - (b) \mathbb{Z} (under the addition operation)
 - (c) \mathbb{R} (under the addition operation)
 - (d) The group G of symmetries of an equilateral triangle
 - (e) U_{10} (under the multiplication operation)