Name:_

Subgroups of Cyclic Groups

Recall: Definition 22.14 A group G is a cyclic group if $G = \langle a \rangle$ for some $a \in G$.

Definition 22.17 Let G be a group and $a \in G$. If $\langle a \rangle$ is a finite group, then the element a has **finite** order. In this case, the **order** of a is equal to the order of the subgroup generated by a. If $\langle a \rangle$ is an infinite group, the element a has **infinite order**.

1. Give an example of a cyclic group of finite order and an example of a cyclic group of infinite order.

Note: Please don't confuse the notation we use for the order of an element with absolute value. To be clear, $|a| = |\langle a \rangle|$. In words: the order of the element *a* is equal to the number of elements in the subgroup generated by the element *a*.

- 2. Let $G = \mathbb{Z}_8$ under the operation addition.
 - (a) Find the order of each of the elements in G [see Table 23.1 on page 319 in your text].

(b) Find the cyclic subgroups generated by a = 2, a = 3, and a = 4

- 3. Let $G = \mathbb{Z}_9$ under the operation addition.
 - (a) Find the order of each of the elements in G.

(b) Find the cyclic subgroups generated by a = 2, a = 3, and a = 4

- 4. Let $G = \mathbb{Z}_{12}$ under the operation addition.
 - (a) Find the order of each of the elements in G.

(b) Find the cyclic subgroups generated by a = 2, a = 3, and a = 4

Theorem 23.2 Every subgroup of a cyclic group is cyclic.

- 5. The goal of this Activity is to understand the proof of Theorem 23.2
 - (a) State, as clearly as you can, exactly what we need to show in order to prove this theorem. [Hint: how is it quantified?]
 - (b) Let H be a subgroup of G. Notice that there is one particular subgroup of G that is clearly cyclic identify this subgroup and explain how we know it must be cyclic. If H is not that particular subgroup, what additional assumption can we make about H?
 - (c) Consider any element $h \in H$. Noting that $h \in G$, how h can be expressed what form must it have?
 - (d) Given a non-trivial subgroup H of G, let $S = \{k \in \mathbb{Z}^+ : a^k \in H\}$. Explain why S must be nonempty.
 - (e) What result allows us to conclude that S has a least element?
 - (f) Let m be the smallest positive integer in S. That is, m is the smallest positive integer such that $a^m \in H$. Our goal is to show that $\langle a^m \rangle = H$. What must be done in order to demonstrate this?
 - (g) Suppose $b \in H$. Why must $b = a^{\ell}$ for some integer ℓ ? How does ℓ compare to m?
 - (h) If we apply the division algorithm to ℓ and m, we can write $\ell = qm + r$. What can we say about r?
 - (i) Since $b = a^{\ell} = a^{mq+r}$ and m is the smallest positive power of a that occurs in H, we must have r = 0. What can be conclude about b and $\langle a^m \rangle$?