Name:

Recall: Given integers $a, b \in \mathbb{Z}$, we say that a is congruent to b modulo n if b - a is a multiple of n. We can rephrase this in terms of the subgroup $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}$ of the group \mathbb{Z} by observing that $a \equiv b \pmod{n}$ if $b - a \in n\mathbb{Z}$. With this in mind, we can define a similar relation on any group G relative to a subgroup H. We will try this out in the first problem below.

- 1. Let G be the group \mathbb{Z}_8 (under addition). Let $H = \langle [4] \rangle = \{ [0], [4] \}$. Define a relation \sim_H on \mathbb{Z}_8 by $a \sim_H b$ if and only if $b a \in H$ (Note that we are using additive notation).
 - (a) Find all elements in \mathbb{Z}_8 that are related to [2] via \sim_H .
 - (b) For each $g \in \mathbb{Z}_8$, find all of the elements that are related to g via \sim_H .

(c) What patterns and properties do you notice about the collection of sets that you found in part (b) above?

Definition 26.3: Let G be a group and H a subgroup of G. Let \sim_H be the relation on G such that for all $a, b \in G$, $a \sim_H b$ if and only if $a^{-1}b \in H$ (Note that we are now using multiplicative notation).

2. Let $G = S_3$ and $H = \langle (12) \rangle$. Find all elements $\sigma \in S_3$ such that $\sigma \sim_H (123)$.

- 3. Let G be a group with identity e and let H be a subgroup of G.
 - (a) Prove that \sim_H is a reflexive relation on G.
 - (b) Prove that \sim_H is a symmetric relation on G.
 - (c) Prove that \sim_H is a transitive relation on G.

Definition 26.6: Let G be a group and H a subgroup of G. Let $g \in G$. The **left coset** of H in G containing g is the set $gH = \{gh : h \in H\}$. Similarly, the **right coset** of H in G containing g is the set $Hg = \{hg : h \in H\}$. The element g is called the **coset representative** of gH (or Hg).

Note: We are once again using multiplicative notation. In additive notation, we would write a + H or H = a for left and right cosets, respectively. Also notice that the equivalence classes under \sim_H are precisely the same as the left cosets of H in G. Given this, the following Theorem follows directly from facts that we already know about equivalence classes.

Theorem 26.7 Let G be a finite group and H a subgroup of G.

- If a and b are in G, then aH = bH or $aH \cap bH = \emptyset$.
- The group G can be written as a disjoint union of left cosets of H.

4. Let $G = S_3$.

(a) Let $H = \langle (12) \rangle$ Find the left cosets of H in G.

(b) Let $H = \langle (12) \rangle$ Find the right cosets of H in G.

(c) Let $H = \langle (123) \rangle$ Find the left cosets of H in G.

(d) Let $H = \langle (123) \rangle$ Find the right cosets of H in G.

5. If G is any group, H a subgroup of G, and g an element of G, what, if anything, can we say about how gH and Hg compare to each other?