
Math 476 - Abstract Algebra 1
Day 16 Group Assignment Name:

Lagrange’s Theorem

1. Consider the group D6, the symmetries of a regular hexagon (see page 277 in your textbook).

(a) What is the order of D6? List out every divisor of |D6|.

(b) For each positive divisor d of |D6|, determine whether or not D6 has a subgroup of order d.

(c) Does D6 have any subgroups whose order is not a divisor of D6?

Theorem 26.11 (Lagrange’s Theorem): If G is a finite group and H a subgroup of G, then the order of H divides
the order of G

Although we will give a formal proof of this theorem, the following activity will help us see why this theorem is true.

2. Let G be a finite group, let a ∈ G, and let H be a subgroup of G. The left coset aH is defined as follows:
aH = {ah : h ∈ H}. Let ϕ : aH → H be the function defined via ϕ(ah) = h.

(a) Show that ϕ is a one to one function.

(b) Show that ϕ is an onto function.

(c) Parts (a) and (b) above show that ϕ is a bijection. What does this tell us about the number of elements in aH

for any a ∈ G?

(d) Since G is the disjoint union if its cosets (they are generated by an equivalence relation), what does this tell us
about how |H| related to |G|?



Note: The converse to Lagrange’s Theorem is not true. Lagrange’s theorem ensures that the order of any subgroup
divides the order of the group. However, there are cases where the order of G has a divisor d, but there ends up not
being any subgroups of that order. To see this, consider A4. As we saw in DGW 14, |A4| = 12. However, if you examine
this group closely, you can show that it has no subgroups of order 6. We do have the following partial converse to
Lagrange’s Theorem.

Corollary 26.13: Let G is a finite group of order n with n > 1. Then there is a prime integer p such that G contains
a subgroup of order p.

Proof: Let G be a group of order n > 1 with identity e. Since n > 1, we can choose an element a 6= 1 in G. Let
H = 〈a〉. Since G has finite order, we may apply Lagrange’s Theorem to G and H to conclude that |a| = |H| divides
n. Then |a| = d for some divisor d of n. Since H is cyclic, by Theorem 23.7, H has exactly one subgroup of order k for
each positive divisor k of d. Since every subgroup of H is also a subgroup of G, we can conclude that G has a subgroup
of order k for every positive divisor k of d. in particular, if p is a prime that divides d, G has a subgroup of order p. ✷.

Corollary 26.14: Let G be a finite group of order |G| = n with identity element e. Then an = e for every a ∈ G.

3. Give a brief (but clear) explanation for why this Corollary is true.

Definition 26.15: Let G be a group and H a subgroup of G. The index of H in G is the number of distinct left
cosets of H in G.

We denote the index of H in G as [G : H]. When G is a finite group, we have: [G : H] =
|G|

|H|
. Please note that we can

apply definition 26.15 to infinite groups (but the division property stated here does not make sense). To see this, think
about G = Z and H = E = 2Z.

4. For each of the following, find [G : H].

(a) G = Z16 H = 〈[4]〉

(b) G = S3, H = 〈(1, 2)〉

5. Let G be a group of order p, where p is prime, and let H be a subgroup of G. What does Lagrange’s Theorem allow
us to conclude about possibilities for the order of H? How many subgroups does G have?

6. Let G be a group of order p, where p is prime, and let a ∈ G. What must be true about |a|? Explain. Based on this,
what conclusions can we draw about G? Must G be Abelian? Must G be cyclic? Explain.


