Name:__

Isomorphisms and Homomorphisms

Definition 29.11: Let S and T be sets. A mapping $f: S \to T$ is well-defined is f(a) = f(b) whenever a = b in S.

Recall: If there is an isomorphism φ between G and H, we say G and H are isomorphic, denoted $G \cong H$.

Theorem 29.14 The relation of group isomorphism (\cong) is an equivalence relation on the set of all groups.

In order to prove this theorem, we must show that this relation is reflexive, symmetric, and transitive. I will leave the proofs of reflexivity and transitivity as presentation problems. Here is an outline of the proof that this relation is symmetric:

Suppose that G and H are groups and that $\varphi : G \to H$ is an isomorphism from G to H. Since φ is a isomorphism, it is a bijection, so there is a well defined inverse map φ^{-1} from H back to G defined via $\varphi^{-1}(y) = x$. whenever $\varphi(x) = y$. To see that this map is well defined, note that if $\varphi^{-1}(y) = x$ and $\varphi^{-1}(y) = x'$ for some $x, x' \in G$, then $y = \varphi(x)$ and $y = \varphi(x')$. Since φ is 1-1, we must have x = x', hence φ^{-1} is well defined.

To see that φ^{-1} is a bijection, note that if $\varphi^{-1}(y) = \varphi^{-1}(y')$ for $y, y' \in H$, then $\exists x \in G$ so that $x = \varphi^{-1}(y) = \varphi^{-1}(y')$, so $\varphi(x) = y = y'$. Since φ is a well defined function, y = y', so φ^{-1} is 1-1. To see φ^{-1} is onto, note that for every $x \in G$, there is some $y \in H$ such that $y = \varphi(x)$. Thus $\varphi^{-1}(y) = x$.

The last detail that remains is to show that φ^{-1} preserves the group operation. Let $y, y' \in H$. Let $x = \varphi^{-1}(y)$, and $x' = \varphi^{-1}(y')$. Then $\varphi(x) = y$, and $\varphi(x') = y'$. Since φ is an isomorphism, $\phi(xx') = \varphi(x)\varphi(x') = yy'$. Thus $\varphi^{-1}(yy') = xx' = \varphi^{-1}(y)\varphi^{-1}(y')$. Therefore, $\varphi^{-1}: H \to G$ is an isomorphism. Hence \cong is a symmetric relation.

Theorem 29.16 Let p be an odd prime and G a non-Abelian group of order 2p. Then $G \cong D_p$. [We will not go over the proof of this theorem. if you are interested, you should read I-24 and pp. 406-407 in your textbook].

Theorem 29.18 Any finite cyclic group of order n is isomorphic to \mathbb{Z}_n .

Proof Sketch: Let *a* be a generator for a cyclic group *G* of order *n*. Define a map $\varphi : G \to \mathbb{Z}_n$ by taking $\varphi(a^k) = [k]$. In particular $\varphi(a) = [1]$, and $\varphi(a^k) = [0]$. We claim that this map is an isomorphism.

Theorem 29.19 Any countably infinite cyclic group is isomorphic to \mathbb{Z} . [You will be asked to prove this on your next homework assignment].

Theorem 29.24 (Cayley's Theorem) Every group is a subgroup of a group of permutations. [we will discuss this theorem in more detail later.]

Corollary 29.25 If G is a finite group of order n, then G is isomorphic to a subgroup of the symmetric group S_n .

Definition 30.2 Let G and H be groups. A function φ from G to H is a **homomorphism** of groups if $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in G$.

1. How does this definition differ from that of an isomorphism of groups? is every isomorphism and homomorphism? Is every homomorphism an isomorphism?

Notation: Here is some vocabulary that is used to distinguish different types of homomorphisms:

- a **monomorphism** is an injective homomorphism (a homomorphism that is 1-1).
- an **epimorphism** is an surjective homomorphism (a homomorphism that is onto).
- an isomorphism is a homomorphism that is bijective (a homomorphism that is both 1-1 and onto).

Note: If $\varphi : G \to H$ is an epimorphism, we call H the **homomorphic image** of G.

^{2.} Why do you think that we require the map to be an epimorphism in order to consider H to be the homomorphic image of G?

Theorem 30.4 Let G and H be groups with identities e_G and e_H , respectively, and let $\varphi : G \to H$ a homomorphism. Then:

- (a) $\varphi(e_G) = e_H$.
- (b) If $a \in G$, then $\varphi(a^{-1}) = (\varphi(a))^{-1}$

Note: The proofs of these follow closely from the similar results we proved for isomorphisms. Can you adapt those proofs to this situation?

Definition 30.5 Let $\varphi : G \to H$ be a homomorphism of groups and let e_H be the identity element in H. The **kernel** of φ is the set $Ker(\varphi) = \{a \in G : \varphi(a) = e_H\}$.

3. For each of the following, determine whether or not the given map is a group homomorphism. For those that are, find the kernel.

(a) $G = \mathbb{Z}, H = \mathbb{Z}_5$, and $\varphi(k) = [k]_5$.

(b) $G = \mathbb{Z}_3$, $H = \mathbb{Z}_{18}$, and $\varphi([k]_3) = [6k]_{18}$.

(c) $G = U_{12}, H = \mathbb{Z}_6$, and $\varphi([k]_{12}) = [k]_6$.