Definition 31.2 A p-group, where p is a prime, is a group whose order is a power of p.

Note: Our goal, in this section, is to classify all Abelian groups that have finite order. As we will see, p-groups will end up being the building blocks we use to build any finite order Abelian group. We will "combine" these building blocks using the direct sum operation (\oplus) that we explored in the portions of I-28 that we discussed previously.

Theorem 31.3 Let p be a prime, and let G be a finite Abelian p-group. Let $a \in G$ be an element of maximal order in G. There there exists a subgroup K of G so that $G = \langle a \rangle \times K$.

To help illustrate the consequences of this theorem, consider the following example:

- 1. Let $G = U_{60}$. To save us some time, please note that elements of this group along with the order of each element is given on page 436 in your textbook.
	- (a) Find an element a of maximal order in U_{60} and compute $\langle a \rangle$.

(b) Find a maximal subgroup K of G so that $\langle a \rangle \cap K = \{ [1] \}.$ (Hint: if we want $\langle a \rangle \times K = G$, what must the order of K be? Also note that $[7]^2 = [13]^2 = [17]^2 = [23]^2 = [37]^2 = [43]^2 = [47]^2 = [53]^2 = [49] \in U_{60}$.

(c) Verify that every element of U_{60} can be written in the form a^mk using the choices of a and K you found in parts (a) and (b) above.

Corollary 31.6: Let p be prime and G a finite Abelian p-group. Then G is an internal direct product of cyclic p-groups.

Example: Let $n = 27$. Determine, up to isomorphism, all Abelian groups of order $n = 27$.

Note that $27 = 3^3$. Then there are three possible ways of decomposing this into factors: 3^3 , $3^2:3$, and 3:3:3. (this of these as the integer partitions of 3: 3, 2 − 1, and $1-1-1$. Note that we do not consider $1-2$ and $2-1$ as different partitions here (Why?).

Then the isomorphism classes are: \mathbb{Z}_{27} , $\mathbb{Z}_9 \oplus \mathbb{Z}_3$, and $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$.

Definition 31.10: Let G be a finite Abelian group of order n, and let p be a prime factor of n. The p-**primary** component of G is the set $G(p) = \{a \in G : |a| = p^i \text{ for some non-negative integer } t\}.$ That is, $G(p)$ is a set of all elements in G whose order is a power of p .

2. Let G be a finite Abelian group with identity e and let p be a prime divisor of $|G|$. Prove that $G(p)$, as defined above, is a subgroup of G .

Lemma 31.12 If p is a prime factor of $|G|$, then $G(p)$ is a subgroup of G whose order if a power of p.

Proof: See p. 440 in your textbook.

Theorem 31.13 (The Fundamental Theorem of Finite Abelian Groups) Let G be a finite Abelian group. Then $G = G(p_1) \times G(p_2) \times \cdots \times G(p_k)$, there p_1, p_2, \cdots, p_k are the distinct prime factors of $|G|$.

Proof: See pp. 440-441 in your textbook.

Alternative Version of the Fundamental Theorem of Finite Abelian Groups: Let G be a finite Abelian group. Then G is isomorphic to a direct product of cyclic groups: $\mathbb{Z}_{c_1} \oplus \mathbb{Z}_{c_2} \oplus \cdots \oplus \mathbb{Z}_{c_t}$, where $c_i \geq 2$. The integers c_1, c_2, \dots, c_t are called the **invariant factors** of G.

3. Let G be a finite Abelian group with order $n = |G| = 1800$.

(a) Find the prime factorization of $n = 1800$ and use it to express G as the direct product of p-groups.

(b) For each p-group $G(p_i)$ you found in part (a), list all possible ways that $G(p_i)$ could be expressed as a direct product of cyclic groups, up to isomorphism.

(c) Use the possible forms for each $G(p_i)$ you found in part (b) to create a complete list of isomorphism classes for Abelian groups of order 1800.