Name:_

Definition 6.2 A rational number is a real number that can be expressed as the quotient of two integers a and b with $b \neq 0$. The set of all rational, denoted by \mathbb{Q} is defined to be $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, and b \neq q\}$.

Note: Two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$ are considered to be equal if and only if ad = bc. Addition and multiplication within \mathbb{Q} are defined as follows:

•
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and
• $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ for all $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$.

- 1. In this exercise, we will investigate some important algebraic properties of \mathbb{Q} under its two operations: addition and multiplication.
 - (a) Does \mathbb{Q} have an additive identity? If so, what is it? Does it contain a multiplicative identity? If so, what is it?
 - (b) Does every element of \mathbb{Q} have an additive inverse? Justify your answer.
 - (c) Which elements of \mathbb{Q} are units (that is, which elements of \mathbb{Q} have a multiplicative inverse)? Are there elements of \mathbb{Q} that do not have a multiplicative inverse in \mathbb{Q} ?
 - (d) Does $x \cdot 0 = 0$ for all $x \in \mathbb{Q}$? (This property is called the zero property of multiplication.)
 - (e) Does \mathbb{Q} contain any zero divisors? That is, do there exist non-zero elements $x, y \in \mathbb{Q}$ such that xy = 0?
 - (f) Does additive cancellation hold in \mathbb{Q} ? That is, if x + z = y + z for some $x, y, x \in \mathbb{Q}$, does it follow that x = y?
 - (g) Does multiplicative cancellation hold in \mathbb{Q} ? That is, if $x \cdot z = y \cdot z$ for some $x, y, x \in \mathbb{Q}$, does it follow that x = y? Would your answer change is we added the assumption that $z \neq 0$?
 - (h) Does \mathbb{Q} satisfy the order axioms on p. 8 of your textbook?

Definition 6.4: A complex number is any number of the form a + bi. where $a, b \in \mathbb{R}$ and i is an imaginary number with the property that $i^2 = -1$. The real number a is called the **real part** of the complex number x = a + bi, and the real number b is called the **imaginary part** of x.

Note: Two complex numbers a + bi and c + di are considered to be equal if and only if a = c and b = d. Addition and multiplication within \mathbb{C} are defined as follows:

- (a+bi) + (c+di) = (a+c) + (b+d)i and
- $(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$ for all a+bi, $c+di \in \mathbb{C}$.
- 2. In this exercise, we will investigate a few of the algebraic properties of \mathbb{C} under its two operations: addition and multiplication.
 - (a) Show that 1 + 0i is the multiplicative identity in \mathbb{C} . What is the additive identity?
 - (b) Find the additive inverse of the complex number 3 + 5i. Then find an expression for the additive inverse of a general complex number a + bi.
 - (c) Find the multiplicative inverse of the complex number 3+5i. Then find an expression for the multiplicative inverse of a general complex number a + bi (assuming that a and b are not both zero).

- 3. Consider $\mathcal{M}_{2\times 2}(\mathbb{R})$, the set of all 2×2 matrices with real entries.
 - (a) Describe how addition is defined in $\mathcal{M}_{2\times 2}(\mathbb{R})$.
 - (b) Describe how multiplication is defined in $\mathcal{M}_{2\times 2}(\mathbb{R})$.
 - (c) Does $\mathcal{M}_{2\times 2}(\mathbb{R})$ have an additive identity? Does $\mathcal{M}_{2\times 2}(\mathbb{R})$ have a multiplicative identity?
 - (d) Does every element of $\mathcal{M}_{2\times 2}(\mathbb{R})$ have an additive inverse? If so, what form does it have?
 - (e) Does every element of $\mathcal{M}_{2\times 2}(\mathbb{R})$ have a multiplicative inverse? If so, what form does it have?