Name:____

Polynomial Rings and Divisibility

Definition 11.12 Let R be a commutative ring and let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ be a polynomial in R[x]. The **polynomial function induced by** p(x) is the function $\overline{p} : R \to R$, where for each r in R, $\overline{p}(x) = a_n r^n + a_{n-1}r^{n-1} + \dots + a_1r + a_0$. For simplicity, we often just say that \overline{p} is a **polynomial function**.

1. Let $p(x) = x^4$ and $q(x) = x^2$ be polynomials in \mathbb{Z}_5 .

(a) For the polynomial function $\overline{p}: \mathbb{Z}_5 \to \mathbb{Z}_5$, determine $\overline{p}([0]), \overline{p}([1]), \overline{p}([2]), \overline{p}([3])$, and $\overline{p}([4])$.

(b) For the polynomial function $\overline{q}: \mathbb{Z}_5 \to \mathbb{Z}_5$, determine $\overline{q}([0]), \overline{q}([1]), \overline{q}([2]), \overline{q}([3])$, and $\overline{q}([4])$.

- (c) Is the function \overline{p} equal to the function \overline{q} ? Explain.
- 2. Let $p(x) = x^4$ and $q(x) = x^2$ be polynomials in \mathbb{Z}_4 .
 - (a) For the polynomial function $\overline{p}: \mathbb{Z}_4 \to \mathbb{Z}_4$, determine $\overline{p}([0]), \overline{p}([1]), \overline{p}([2]), \text{ and } \overline{p}([3])$.

(b) For the polynomial function $\overline{q}: \mathbb{Z}_4 \to \mathbb{Z}_4$, determine $\overline{q}([0]), \overline{q}([1]), \overline{q}([2]), \text{ and } \overline{q}([3])$.

(c) Is the function \overline{p} equal to the function \overline{q} ? Explain.

- 3. We know that if R is a commutative ring, then R[x] is a commutative ring, and that if R has identity, then R[x] also has identity. We also know that if D is an integral domain, then D[x] is also an integral domain. The next question to consider is: if F is a field, is F[x] a field?
 - (a) Is $\mathbb{R}[x]$ a field? (Hint: consider the polynomial p(x) = x in $\mathbb{R}[x]$)

(b) Is $\mathbb{Z}_3[x]$ a field?

(c) If F is a field, if F[x] always, sometimes, or never a field? Give a proof or appropriate examples.

Definition 12.2 Let R be a commutative ring and let u(x) and v(x) be polynomials in R[x]. The polynomial u(x) divides the polynomial v(x) provided that there exists a polynomial $q(x) \in R[x]$ such that v(x) = u(x)q(x). In this case, we say that u(x) is a **factor** of v(x) and sometimes write u(x)|v(x).

Theorem 12.3 Let F be a field and let $f(x), g(x) \in F[x]$.

- If f(x) divides g(x), and $c \in F$ and $c \neq 0$, then cf(x) divides g(x).
- If $f(x) \neq 0$, $g(x) \neq 0$, and f(x) divides g(x), then $\deg(f(x)) \leq \deg(g(x))$.
- If $f(x) \neq 0$ and a_n is the leading coefficient of f(x), then $a_n^{-1}f(x)$ is a monic polynomial.
- If f(x) divides g(x) and g(x) divides f(x), then there exists $c \in F$ with $c \neq 0$ such that f(x) = cg(x).
- Let f(x) and g(x) be monic polynomials in F[x]. If f(x) divides g(x) and g(x) divides f(x), then f(x) = g(x).

Proof: The first and third parts of this theorem are proven on pp. 154-155 in your textbook. The proofs are fairly elementary – making use of the definition of divisibility on a polynomial ring and the existence of multiplicative inverses in a field. You should read and be familiar with these arguments. The proofs of the remaining parts are eligible presentation problems.

The Division Algorithm Let F be a field and let f(x) and g(x) be polynomials in F[x] with $g(x) \neq 0$. There there exist unique polynomials q(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x) and r(x) = 0 or $\deg(r(x)) < \deg(g(x))$.

4. Let $f(x) = x^4 + x^3 + 2x^2 + x + 2$ and $g(x) = 2x^2 + x + 1$ be polynomials in $\mathbb{R}[x]$. Use long division of polynomials to find polynomials q(x) and r(x) such that f(x) = g(x)q(x) + r(x) with r(x) = 0 or $\deg(r(x)) < \deg(g(x))$. Does g(x) divide f(x)?

5. Let $f(x) = x^4 + x^3 + [2]x^2 + x + [2]$ and $g(x) = [2]x^2 + x + [1]$ be polynomials in $\mathbb{Z}_3[x]$. Use long division of polynomials to find polynomials q(x) and r(x) such that f(x) = g(x)q(x) + r(x) with r(x) = 0 or $\deg(r(x)) < \deg(g(x))$. Does g(x) divide f(x) in $\mathbb{Z}_3[x]$?

6. Let $f(x) = x^4 + x^3 + [2]x^2 + x + [2]$ and $g(x) = [2]x^2 + x + [1]$ be polynomials in $\mathbb{Z}_5[x]$. Use long division of polynomials to find polynomials q(x) and r(x) such that f(x) = g(x)q(x) + r(x) with r(x) = 0 or $\deg(r(x)) < \deg(g(x))$. Does g(x) divide f(x) in $\mathbb{Z}_5[x]$?