Recall: Definition 12.2 Let R be a commutative ring and let u(x) and v(x) be polynomials in R[x]. The polynomial u(x) **divides** the polynomial v(x) provided that there exists a polynomial $q(x) \in R[x]$ such that v(x) = u(x)q(x). In this case, we say that u(x) is a **factor** of v(x) and sometimes write u(x)|v(x).

Definition 12.8 Let F be a field and let $f(x), g(x) \in F[x]$ be polynomials that are not both zero. The greatest common divisor of f(x) and g(x) is the polynomial $d(x) \in F[x]$ that satisfies the following three conditions:

- d(x) divides both f(x) and g(x).
- If $h(x) \in F[x]$ and h(x) divides both f(x) and g(x), then h(x) divides d(x).
- d(x) is a monic polynomial (that is, the leading coefficient of d(x) is 1_F).

Theorem 13.3 (The Remainder Theorem) Let F be a field, let $p(x) \in F[x]$, and let $c \in F$. The remainder then p(x) is divided by (x - c) is equal to p(c). That is, there exists a unique polynomial $q(x) \in F[x]$ such that p(x) = (x - c)q(x) + p(c)

Proof Sketch: By the division algorithm, there exist unique polynomials q(x) and r(x) in F[x] such that p(x) = (x - c)q(x) + r(x) with r(x) = 0 or $\deg(r(x)) < \deg(x - c)$. Since $\deg(x - c) = 1$, we must have r(x) = 0 or $\deg(r(x)) = 0$. In either case, r(x) = a for some $a \in F$. Then p(x) = (x - c)q(x) + a. Therefore, $p(c) = (c - c)q(x) + a = 0_F + a = a$. Hence p(c) = a. Therefore, r(x) = p(c). \Box .

Definition 13.4 Let R be a commutative ring and let $p(x) \in R[x]$. An element c of R is called a **root of the polynomial** p(x) provided that $p(c) = 0_R$.

Theorem 13.5 (The Factor Theorem) Let F be a field, let $p(x) \in F[x]$, and let $c \in F$. Then c is a root of the polynomial p(x) if and only if (x - c) is a factor of p(x).

Theorem 14.2 (Fundamental Theorem of Algebra) Every Polynomial of degree 1 or more in $\mathbb{C}[x]$ has a root in \mathbb{C} .

- 1. Let $F = \mathbb{R}$, let $f(x) = x^3 + 2x^2 x 2$ and let $g(x) = x^3 + x^2 2x$.
 - (a) Show that c = 1 is a root of both f(x) and g(x). Based on this, find one common divisor of these two polynomials.
 - (b) Find the greatest common divisor of f(x) and g(x).

- (c) Describe as clearly as you can the set of all polynomials that divide g(x).
- 2. Let I be the subset of \mathbb{Z}_{12} defined by $I = \{[0], [3], [6], [9]\} = \{k[3] : k \in \mathbb{Z}\}.$
 - (a) Show that I is a subring of \mathbb{Z}_{12} .

Name:__

(b) Show that if $[a] \in \mathbb{Z}_{12}$ and $[b] \in I$, then $[a][b] \in I$ and $[b][a] \in I$.

- (c) Define a relation \equiv_I on \mathbb{Z}_{12} via $[a] \equiv_I [b]$ if and only if $[b] [a] \in I$.
 - i. Describe all the elements of \mathbb{Z}_{12} that are related to [0].
 - ii. Describe all the elements of \mathbb{Z}_{12} that are related to [1].
 - iii. Describe all the elements of \mathbb{Z}_{12} that are related to [5].

Definition 16.2 An ideal I in a ring R is a subring of R such that $rx \in I$ and $xr \in I$ for all $r \in R$ and $x \in I$. This property if called the *absorbing property* or *closure under outside multiplication*.

Theorem 16.4(The Ideal Test). Let R be a ring. A subset I of R is an ideal of R if and only if:

- *I* is non-empty;
- $a b \in I$ for every $a, b \in I$; and
- $ra \in I$ and $ar \in I$ for every $r \in R$ and $a \in I$.
- 3. For each of the following, use the Ideal Test to determine whether or not the set I is an ideal of the ring R.
 - (a) $R = \mathbb{Z}$ and $I = \{0\}$.

(b) $R = \mathbb{Z}$ and $I = \{2n : n \in \mathbb{Z}\}.$

(c) $R = \mathbb{R}$ and $I = \mathbb{Q}$.