The Fundamental Theorem of Arithmetic & Equivalence Relations in \mathbb{Z}_n

Recall:

Definition 4.2: A **prime number** is an integer p > 1 whose only positive divisors are 1 and p. A positive integer greater than one that is not prime is said to be **composite**.

The Fundamental Theorem of Arithmetic: Every integer greater than 1 is either a prime or can be expressed as a product of primes. Furthermore, this factorization is unique up to the order of the factors.

- 1. The following exercises are designed to help you understand the Fundamental Theorem of Arithmetic.
 - (a) What does it mean for a positive integer n to **not** be prime? Negate Definition 4.2 to give a precise answer.
 - (b) Is 6360 prime? Justify your answer.
 - (c) Find positive integers x and y such that 6360 = xy. Can this be done in more than one way? Try to find several.
 - (d) Find a complete prime factorization for 6360.
- 2. To prove the Fundamental Theorem of Arithmetic, we would need to give an "existence/uniqueness" proof. The "existence" part requires demonstrating that each integer greater than one is prime or can be expressed as a product of primes. Here is an outline of the "existence" portion of the proof.
 - (a) Let P(n) be the statement: n is either prime or a product of primes. Briefly explain why P(2), P(3), and P(4) are true.
 - (b) Proceeding using proof by induction, we take P(2) as our base case and suppose that $P(2), P(3), \dots, P(n)$ are all true. Explain why P(n+1) must also be true (Hint: there are two cases).

Note: Proving uniqueness is a bit more complicated. We will not do that part in detail – you can read more about this in your book on pages 37-38. The prof makes use of the strong form of Euclid's Lemma:

Euclid's Lemma (Strong Form) Let a_1, a_2, \dots, a_n be integers and let p be prime. If $p|a_1a_2 \cdots a_n$, then $p|a_i$ for some i with $1 \le i \le n$.

Definition 4.8: Let \mathbb{E} the set of even integers. A **prime number in** \mathbb{E} is a positive even integer p that cannot be written as a product of two other even integers. That is, $p \in \mathbb{E}$ is prime provided there do not exist even integers x and y such that p = xy.

- 3. In this exercise, we will explore prime factorizations in \mathbb{E} .
 - (a) List the first 8 primes in \mathbb{E} .
 - (b) Find a way to write 60 as a product of primes in \mathbb{E} .
 - (c) Find a second (distinct) way to write 60 as a product of primes in \mathbb{E} or explain why it is impossible to do so.
 - (d) Does the Fundamental Theorem of Arithmetic hold in \mathbb{E} ?
- 4. In this activity, we will review equivalence relations and equivalence classes using the example of mod5 equivalence. For every integer a, let $[a]_5$ denote the set of all integers that are congruent to a modulo 5.
 - (a) Use set notation to express $[0]_5$ in roster form. Do the same for $[1]_5$, $[2]_5$, $[3]_5$, $[4]_5$, and $[5]_5$.
 - (b) What is the remainder when 4567 is divided by 5? Which, if any, of the sets you found in part (a) contains 4567?
 - (c) What is $[1]_5 \cap [2]_5$? What is $[0]_5 \cup [1]_5 \cup [2]_5 \cup [3]_5 \cup [4]_5$?
 - (d) If $[a]_5 = [b]_5$, what can we say about a and b?

Definition 5.2: Let *n* be a natural number, and let *a* be in integer. The **congruence class of** a **modulo** *n*, denoted $[a]_n$, is the set of all integers congruent to *a* modulo *n*. In other words, $[a]_n = \{x \in \mathbb{Z} : x \equiv a((modn))\}$.

- For $0 \le a \le n-1$, $[a]_n$ contains all integers x for which x divided by n yields a remainder of a.
- Note that it is possible for $[a]_n = [b]_n$ even when $a \neq b$. However, $[a]_n = [b]_n$ if and only if $a \equiv b \mod n$.
- For any pair a, b, we must have either $[a]_n = [b]_n$ or $[a]_n \cap [b]_n = \emptyset$.
- For any positive integer n, \mathbb{Z} is the disjoint union of the set of equivalence classes modulo n.

Definition 5.3: Let S be a set, and let \sim be a binary relation on S. Then \sim is called an **equivalence relation** on S provided that \sim satisfies the following properties:

- Reflexivity: For all $a \in S$, $a \sim a$.
- Symmetry: For all $a, b \in S$, if $a \sim b$ then $b \sim a$.
- **Transitivity:** For all $a, b, c \in S$, if $a \sim b$ and $b \sim c$, then $a \sim c$.

Theorem 5.4: Let *n* be any natural number. Then congruence modulo *n* is an equivalence relation on \mathbb{Z} . In other words, the relation \sim defined by $a \sim b$ if and only if $a \equiv b \pmod{n}$ is an equivalence relation.