Symmetry

1. Identify and describe the different types of symmetry that are present in each of the figures above.

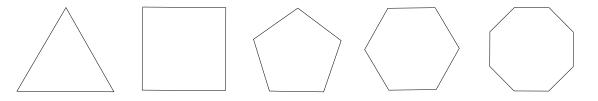
Definition 19.2 A rigid motion in a plane is a bijective function $f : \mathcal{P} \to \mathcal{P}$ such that, for all $p, q \in \mathcal{P}$, d(p,q) = d(f(p), f(q)), where d is the distance function for the given plane.

Recall: When $\mathcal{P} = \mathbb{R}^2$ and *d* is the standard Euclidean distance, rigid motions can be broken down in to the following categorization: translations, rotations, reflections, and glide reflections.

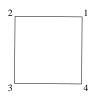
Definition 19.3 A symmetry of a geometric object O is a rigid motion f such that f(O) = O.

Claim: The composition of any two symmetries is a symmetry.

Our goal for the remainder of this activity is to understand the symmetries of the following regular polygons:



One nice way to describe the symmetries of a regular polygon is to label the vertices of the polygon and then use **2-row permutation notation**. Consider the symmetries of a square as an example. They can be represented as follows.

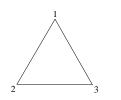


$I = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$	$D_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$
$D_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$	$V = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$
$H = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$	$R_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$
$R_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$	$R_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$

0	Ι	V	H	D_1	D_2	R_1	R_2	R_3
Ι	I	\overline{V}	H	D_1	D_2	R_1	R_2	R_3
V	V	Ι	R_2	R_1	$\overline{R_3}$	D_1	H	D_2
Н	Н	R_2	Ι	R_3	R_1	D_2	V	D_1
D_1	D_1	R_3	R_1	Ι	R_2	Н	D_2	V
D_2	D_2	R_1	R_2	R_2	Ι	V	D_1	Н
R_1	R_1	D_2	D_1	V	Н	R_2	R_3	Ι
R_2	R_2	Н	V	D_2	D_1	R_3	Ι	R_1
R_3	R_3	D_1	D_2	Н	V	Ι	R_1	R_2

2. Spend some time understanding and verifying the operation table for the symmetries of the square given above.

3. Find permutation representations and Build a Composition Operation Table for the symmetries of an equilateral triangle [Building a physical model might be helpful].



4. Find permutation representations and Build a Composition Operation Table for the symmetries of a regular pentagon.

5. If you have time, do the same for a regular hexagon and/or octagon.