Math 476 - Abstract Algebra 1 Day 9 Group Assignment

Name:_

The Order of a Group

Recall: Definition 20.2 A group is a set G on which one binary operation, denoted \cdot is defined such that all of the following axioms hold:

- The set G is closed under its operation $[a \cdot b \in G \text{ for all } a, b \in G]$.
- The operation \cdot is associative in $G[(a \cdot b) \cdot c = a \cdot (b \cdot c) \text{ for all } a, b, c \in G].$
- The set G contains an identity element [there exists an element $e \in G$ such that $a \cdot e = a = e \cdot a$ for all $a \in G$].
- The set G contains an inverse for each of its elements [for each $a \in G$ there exists an element $b \in G$ such that $a \cdot b = e = b \cdot a$].
- 1. Let G be a group. Prove that $(a^{-1})^{-1} = a$.

2. Determine which of the following statements hold in \mathbf{any} group G. Justify your answer.

- $(ab)^{-1} = a^{-1}b^{-1}$
- $(ab)^{-1} = b^{-1}a^{-1}$

Definition 20.10 Let G be a group. If G contains only a finite number of elements, then G has **finite order** and we say G is a **finite group**. If G contains exactly m distinct elements, then the **order** of G, denoted |G|, is m. If G contains infinitely many elements, then G has **infinite order** and we say G is an **infinite group**.

3. Give an example of a finite group (be sure to identify its order) and an example of an infinite group.

- 4. Consider the groups \mathbb{Z}_4 , \mathbb{Z}_5 , \mathbb{Z}_6 , and \mathbb{Z}_8 (under the operation of multiplication on congruence classes).
 - (a) Find the units in each of these groups.

(b) Let U_n represent the set of units in \mathbb{Z}_n . Construct multiplication tables for U_4 , U_5 , U_6 , and U_8 .

(c) Based on these tables, which of these sets are groups under multiplication?

Theorem 20.15 Let S be a set on which an associative binary operation of multiplication is defined such that S contains an identity element 1_S . Let U(S) be the set of units in S. Then U(S) is a group under the operation of multiplication.