
Math 311 - Introduction to Proof and Abstract Mathematics
Group Assignment # 10 Name:

Due: In class on Thursday, October 4th

1. Consider the expression:

n∑

k=1

(2k − 1), where n is a positive integer.

Notice that when n = 1 this gives
1∑

k=1

(2k − 1) = 2(1)− 1 = 2− 1 = 1.

When n = 2, we have
2∑

k=1

(2k − 1) = [2(1)− 1] + [2(2)− 1] = (2− 1) + (4− 1) = 1 + 3 = 4.

(a) Compute the value of this expression when n = 3, n = 4, and n = 5.

(b) Make a reasonable conjecture about the value of this expression for an unspecified value of n (your answer should
be a formula given in terms of n).

Question: What would we need to do in order to fully prove this conjecture?

Theorem 3.1.1 (The Principle of Mathematical Induction [PMI])
Let P (n) be a statement about the positive integer n, so that n is a free variable in P (n). Suppose the following:

• (PMI 1) The statement P (1) is true.

• (PMI 2) For all positive integers m, if P (m) is true, then P (m+ 1) is true.

Then, for all positive integers n, the statement P (n) is true.

Notes:

• The statement P (1) in (PMI 1) is called the Base Case.

• The statement P (n), the hypothesis of the conditional statement given in (PMI 2) is called the induction hy-

pothesis. It is the first component of the quantified conditional statement (∀m ∈ N)[P (m) ⇒ P (m+ 1)]

• In order to see why Theorem 3.1.1 is logically defensible, we can look at it both metaphorically and logically.

Metaphorically, we can visualize the infinite chain of statements P (1), P (2), P (3), · · · , P (n), · · · as steps on a
staircase with an infinite number of steps. (PMI 1) tells us that we can step onto the first step (P (1) is true).
(PMI 2) tells us that once we have climbed onto the nth step , we can always move up one additional step (if
P (m) us true, then P (m + 1) is also true). Since we can get onto the staircase and we can always advance one
more step, every stair on the staircase is “reachable” (P (n) is true for any n).

More practically, we can think (PMI) as applying modus ponens multiple times. If P (1) is true, and (∀m ∈
N)[P (m) ⇒ P (m + 1)], then, in particular, setting m = 1, we have P (1) ⇒ P (2)], so, by modus ponens, P (2) is
true. Since we now know that P (2) is true and we still have (∀m ∈ N)[P (m) ⇒ P (m+1)], setting m = 2, we have
P (2) ⇒ P (3)], so, again by modus ponens, P (3) is true. Since we can continue this process ad infinitum, we can
conclude that P (n) is true for any n ≥ 1.



2. Let’s use this principle to prove the statement

n∑

k=1

(2k − 1) = n2 (does this match your previous conjecture?)

(a) Show that P (1) is true.

(b) Suppose that P (m) is true for some arbitrary positive integer m. Then

m∑

k=1

(2k − 1) = m2.

In your own words, explain why

m+1∑

k=1

(2k − 1) =

m∑

k=1

(2k − 1) + (2(m+ 1)− 1).

(c) Using this, explain why

m+1∑

k=1

(2k − 1) = m2 + (2(m+ 1)− 1).

(d) Then
m+1∑

k=1

(2k − 1) = m2 + (2m+ 2)− 1 = m2 + 2m+ 1 = (m+ 1)2.

Summarize what we just proved in this step in your own words.

(e) In your own words explain why we can now conclude that

n∑

k=1

(2k − 1) = n2 for all n ≥ 1.

3. Let’s work on another example together. Consider the statement n3 + 8n+ 9 is divisible by 3 for all integers n ≥ 1.

(a) Prove that P (1) is true. That is, when n = 1, show that n3 + 8n+ 9 is divisible by 3.



(b) Suppose that P (m) is true for some arbitrary positive integer m. Then 3|m3 + 8m + 9, so ∃k ∈ Z such that
m3 + 8m + 9 = 3k. Consider (m + 1)3 + 8(m + 1) + 9. Use algebra to verify that (m + 1)3 + 8(m + 1) + 9 =
m3 + 3m2 + 11m+ 18.

(c) From this, notice that (m + 1)3 + 8(m + 1) + 9 = m3 + 3m2 + 11m + 18 = (m3 + 8m + 9) + 3m2 + 3m + 9 =
3k + 3m2 + 3m+ 9 = 3(k +m2 +m+ 3). Explain why this proves that P (m+ 1) is true, and hence P (n) is true
for all n ≥ 1.

4. Consider the statement 2n < n!. Recall that n! = n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1. For example, 5! = 5 · 4 · 3 · 2 · 1 = 120.

(a) Investigate whether or not this statement is true for small positive values of n (n = 1, 2, 3, 4, ...).

Suppose that P (m) is true for some reasonable large integer m. That is, suppose 2m < m!. Notice that (m+1)! =
m! · (m+ 1). Then, using order properties of integers, 2m · (m+ 1) < m! · (m+ 1), so 2m · (m+ 1) < (m+ 1)!.

(b) Prove that 2m+1 = 2m · 2 < 2m · (m+ 1).

(c) From this, we may, using the transitivity of <, we may conclude that 2m+1 < (m+1)!. Combining this with your
work and explorations above, for which n values is the statement 2n < n! true?



5. The remainder of this handout consists of general presentation problems that do not need to be handed in for grading
but that you can present on the board during class this week.

(a) Use the Principle of Mathematical Induction to prove that for all n ≥ 1,

n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

(b) Use the Principle of Mathematical Induction to prove that for all n ≥ 1,

n∑

k=1

1

k(k + 1)
=

n

n+ 1

(c) Use the Principle of Mathematical Induction to prove that for all n ≥ 1, 4n − 1 is divisible by 3.

(d) Use the Principle of Mathematical Induction to prove that for all n ≥ 5, n2 < 2n.

(e) Prove that m2 = n2 if and only if m = n or m = −n

(f) Prove or disprove: Every non-negative integer can be written as the sum of at most 3 perfect squares.

(g) Prove or disprove: Let a, b, and c be integers. If a|b and a|c, then a|(b+ c).

(h) Prove or disprove: Let a, b, c and d be integers. If a|b and c|d, then ac|bd.

(i) Prove that x2 + y2 = 11 has no integer solutions.

(j) Prove or disprove: If a and b are positive real numbers, then a+ b ≥ 2
√
ab.

(k) Prove or disprove: If a does not divide bc, then a does not divide b.

(l) Formulate a conjecture about the decimal digits that appear as the final digit of the fourth power of an integer.
Prove your conjecture using proof by cases.


