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Section 4.6: Adaptive Quadrature

• Understand the idea behind Adaptive Quadrature, including how the error term is approximated by subtracting
consecutive applications of (Compound) Simpson’s Rule.
• Be able to carry out a few iterations of Adaptive Quadrature, including checking to see if the error tolerance
has been met after an iteration is complete.
• Be able to derive the error estimate formula for Adaptive Quadrature.

Section 4.7: Gaussian Quadrature

• Understand the idea behind Gaussian Quadrature: finding nodes x1, x2, · · ·xn and coefficients c1, c2, · · · cn such

that

∫
1

−1

P (x) dx =
n∑

i=1

ciP (xi) for any polynomial P (x) of degree less than 2n.

• Know the key properties of Legendre Polynomials.
• Know the statement and proof of Theorem 4.7
• Given a table of roots and coefficients, be able to use Gaussian Quadrature to approximate the value of definite
integrals over [−1, 1].
• Be able to use a change of coordinates to translate an integral over an arbitrary interval [a, b] to one over [−1, 1].

Section 5.1: The Elementary Theory of Initial Value Problems

• Know the definition of a Lipschitz condition and a Lipschitz constant for a function f over a domain D.
• Know the definition of a convex set D (at least conceptually).
• Be able to show that a given function f is Lipschitz over a domain D either directly or using Theorem 5.3
• Understand the definition of a well-posed initial value problem (including the definition of a perturbed

problem).
• Be able to use Theorem 5.6 to show that a given initial value problem is well posed.

Section 5.2: Euler’s Method

• Understand Euler’s method, and be able to derive it from the first order Taylor Polynomial centered at ti
evaluated at ti+1.
• Be able to apply Euler’s method to a well posed IVP to approximate the value of the unique solution at a
particular point.
• Be able to use the error term from Theorem 5.9 in order to find an upper bound on the error in using Euler’s
Method to approximate a well posed IVP as a specific point.

Section 5.3: Higher Order Taylor Methods

• Understand the definition of the local truncation error of a method for approximating the value of a solution
to an IVP.
• Know the general form for both the recursive formula for Taylor’s Method of order n and the remainder term
that can be used to give an upper bound on the local truncation error.
• Be able to use Taylor’s Method of order n to approximate a given well posed IVP at the specific value. This
includes knowing how to compute higher order derivatives of f(t, y).

Section 5.4: Runge-Kutta Methods

• Understand the statement of Taylor’s Theorem for functions of two variables (Theorem 5.13), and the related
definitions of Taylor Polynomials in two variables and their Remainder terms.
• Know both the statement of the Midpoint Method and how it was derived by matching coefficients to the two
variable Taylor Polynomial of degree one.
• Be able to apply the Midpoint Method, Modified Euler’s, Heun’s Method, and Runge-Kutta of Order Four to
approximate solutions to a well posed IVP at a given point.


