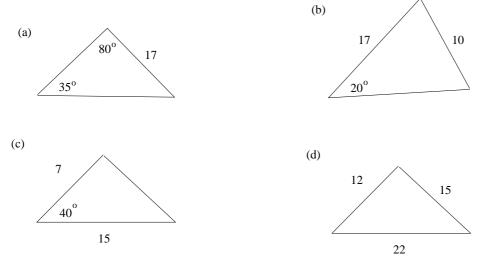
Math 143 Final Exam Practice Problems - Part 2

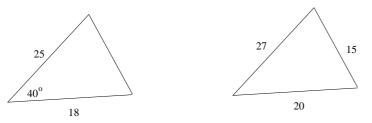
- 1. Find the *exact* value of the following:
 - (a) $\sin(\frac{-\pi}{12})$
 - (b) $\cos(105^{\circ})$
- 2. Given that $\csc \theta = -\frac{5}{4}$ and $\cos \phi = \frac{12}{13}$, where θ is in the third quadrant, and ϕ is in the fourth quadrant, find *exact* values of:
 - (a) $\cos \theta$
 - (b) $\sin(2\phi)$
 - (c) $\cos(\phi \theta)$
 - (d) $\sin(\theta + \phi)$
- 3. Verify the following identities by transforming the left hand side into the right hand side:

(a)
$$\cos\left(\frac{3\pi}{2} - \theta\right) = -\sin\theta$$

(b) $\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = 2\tan x \sec x$
(c) $\sec^2 t - \csc^2 t = \frac{\tan t - \cot t}{\sin t \cos t}$
(d) $\sin 3t \cos 3t = \frac{1}{2}\sin 6t$
(e) $\frac{1 + \cos 2t}{\sin 2t} = \cot t$

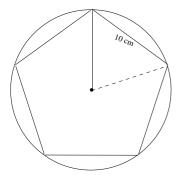

- 4. Find *exact* solutions to the following equations with $0 \le \theta < 2\pi$.
 - (a) $2\sin(4x + \frac{\pi}{4}) = -\sqrt{3}$ (b) $4\cos^3\theta = 3\cos\theta$
 - (c) $\sin 2t \sin t = 0$
 - (d) $2\cos^2\theta 5\cos\theta 5 = 0$
- 5. Given the tables below, find the following:

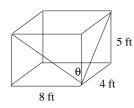
X	0	2	4	6	8	X	0	2	4	6	8
f(x)	1	5	8	4	0	g(x)	2	6	5	9	7
<u> </u>											
(a) f^{-}	$^{-1}(5$)									
(b) $f($	a^{-1}	(9))								
(c) $g($	f^{-1}	(4))								
(c) $g($	f^{-1}	(4))								


6. Determine whether or not the following functions are one-to-one. You must justify your answer to each part.

(a)
$$f(x) = 3x^2 - 2$$

(b) $g(x) = \frac{4}{x}$


- 7. Find the *exact* value of the following:
 - (a) $\sin^{-1}(-\frac{\sqrt{3}}{2})$ (b) $\tan^{-1}(-\sqrt{3})$ (c) $\cos^{-1}(-\pi)$ (d) $\cos(\cos^{-1}(-\frac{1}{2}))$ (e) $\sin^{-1}(\sin(\frac{2\pi}{3}))$ (f) $\tan(\cos^{-1}(\frac{1}{2}))$ (g) $\cos(2\tan^{-1}(-\frac{5}{7}))$
- 8. Express $\tan(\cos^{-1}(\frac{x}{x^2-1}))$ algebraically.
- 9. Solve the following triangles: (these are not neccessarily drawn to scale)


10. Find the area of the following triangles

11. Suppose that a regular pentagon inscribed in a circle has sides of length 10cm. Find the area of the pentagon (See the figure below).

12. A rectangular box measures 8 feet by 4 feet by 5 feet. Find the angle θ between the diagonal on the front of the box with the diagonal on one of the sides of the box. (See the figure below).

- 13. Express the following in the form a + bi. You do **not** have to use trigonometric forms.
 - (a) (7-2i) (6+11i)(b) (7-2i)(6+11i)(c) $\frac{7-2i}{6+11i}$ (d) i^{23456}

14. Let $z_1 = -5 - 5i$ and $z_2 = -12 + 5i$

- (a) Find the trigonometric form of z_1
- (b) Find the trigonometric form of z_2
- (c) Express $(z_1)^6$ in the form a + bi
- (d) Find the fourth roots of $z_1 = -5 5i$
- 15. Change the following from polar coordinates to rectangular coordinates:
 - (a) $(-3,\pi)$
 - (b) $(4, \frac{5\pi}{3})$
 - (c) $(-3, \frac{17\pi}{3})$
- 16. Change the following from rectangular coordinates to polar coordinates:
 - (a) (3, -3)
 - (b) $(2\sqrt{3}, -2)$
 - (c) (-7, -1)
- 17. Write the following equations in polar coordinates:
 - (a) 4y = x
 - (b) 3y 4y = 12
- 18. Graph the following polar equations:
 - (a) $r = 3\sin 2\theta$
 - (b) $r = 2\sin 3\theta$
 - (c) $r = 2 2\sin\theta$