Math 143 Final Exam Review Sheet

Part 0: Sections 1.1, 3.1, 3.2, 3.4, 3.5

Note: These sections are review material and mainly be tested indirectly on the final.

Key Topics:

- The Cartesian Plane, plotting points
- The Pythagorean Theorem and the distance formula
- Sketching graphs by plotting points
- Symmetry of graphs (x-axis, y-axis, origin)
- Circles (general equation, finding the center and radius, graphing)
- The definition of a function and the vertical line test
- The Domain and Range of a function (finding these both algebraically and graphically)

• Even and Odd functions (their symmetry properties, and testing to see is a given function is even, odd, or neither)

• Understanding and interpreting shifts of functions (the 6 basic shifts and their impact on the graph of a function)

Part 1: Chapter 6 - Sections 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7

Key Topics:

• The definition of an angle, finding coterminal angles, the definition of complimentary and supplimentary angles

 \bullet Converting between degree and radian angle measure, know the location of key angles (multiples of 30° and 45°) in both degree and radian form

- Using radians to find the length of a circular arc
- Know the definition of the 6 basic trig functions both for acute angles and general angles.
- Memorize the key values of trig functions for **all** multiples of 30° and 45°

• Know and be able to sketch the basic graphs of the 6 trig functions, and know the definition of a periodic function

• Computing values of trigonometric functions in any quadrant using reference angles and appropriate signs.

• Understanding the features of sine and cosine graphs (amplitude, period, phase shift, midline, max, and min)

• Graphing sin and cos graphs with multiple shifts, or, working backwards to find the equation for a sin or cos function from its graph

• Finding a sine or cosine graph to fit data from a physical phenomenon

• Understanding the features of tangent, cotangent, secant, and cosecant graphs (asymptotes, zeroes, period, phase shift, midline)

- \bullet Graphing tangent, cotangent, secant, and cosecant graphs with multiple shifts
- Solving right triangles, and application problems involving right triangles.

Part 2: Chapter 7 - Sections 7.1, 7.2, 7.3, 7.4, 5.1, 7.6

Key Topics:

- Memorize Key Identities (Pythagorean, Fundamental, Negative, and Reciprocal identities)
- Be able to verify that a given identity holds using algebra and other known identities
- Be able to use counterexamples to show that a given trig equation is not an identity
- Be able to solve elementary trig equations $(\sin \theta = a, \cos \theta = a, \tan \theta = a)$.
- Be able to solve equations involving shifts and multiples of angles.
- Be able to use factoring to solve trigonometric equations
- Be able to find all possible solutions to a trig equation, or solutions on a given interval.
- Memorize key formulas (addition, subtraction, and double angle formulas for sin and cos)

• Use addition, subtraction, and double angle formulas to compute exact values of sin and cos for combinations of key angles and to find the quadrant of a sum or difference of two angles using information about the sin and cos of the original angles.

- Use these formulas to solve equations and verify identities.
- Know the definition of a one to one function, and the definition of the inverse of a one to one function.
- Be able to determine whether or not a given function is one to one, and be able to find the equation for the inverse of a given function.
- Know the 7 key properties of inverse functions (see text page 550)
- Know the domain and range of $y = sin^{-1}x$, $y = cos^{-1}x$, and $y = tan^{-1}x$
- Be able to find exact values of expressions involving inverse trig functions, either using memorized key values or by building triangles and applying identities.

• Be able to put expressions involving inverse trig functions into algebraic form by solving the related right triangle.

- Be able to find the domain and range and sketch the graphs of equations involving inverse trig functions.
- Be able to solve equations that are of quadratic form using inverse trig functions.

Part 3: Chapter 8 - Sections 8.1, 8.2, 2.4, 8.5, 8.6, Polar Coordinates

Key Topics:

- Memorize the Law of Sines, and be able to solve non-right triangles using the Law of Sines, including cases where there are two possible triangles.
- Memorize all 3 forms of the Law of Cosines and be able to use the Law of Cosines to solve application problems.
- Memorize and be able to apply the formulas for finding the area of triangles.
- \bullet Know the definiton of i, and the standard form for a complex number
- Be able to add, subtract, multiply complex numbers
- \bullet Be able to simplify powers of i
- Be able to solve linear and quadratic equations involving complex numbers
- Know how to find the absolute value (modulus) of a comlex number.
- Understand the geometric representation of a complex number z = a + bi
- Understand the polar form of a complex number $z = rcis(\theta)$
- Be able to convert complex numbers from rectangular to polar (trigonometric form) and back

• Be able to multiply and divide complex numbers in polar form, and understand the geometric interpretation of these operations

• Be able to apply De Moivre's Theorem to compute powers of complex numbers in both polar and rectangular form

- Be able to apply the Theorem on n^{th} roots to find n^{th} roots of complex numbers.
- Be able to represent the n^{th} roots of a complex number graphically
- Know the definitions and formulas for polar coordinates.
- Be able to translate both points and equations back and forth between polar and recangular coordinates.
- Be able to graph polar points and polar functions