Math 143 Section 3.4: Functions 1/19/2007

I. What is a Function? Definition:

A function f from a set D to a set E is a correspondence that assigns to each element x of D exactly one element y of E.

Here, x is the **argument** of f and y is the **value** of f at x. Also, D is the **domain** of f, and the **range** is the subset R of E consisting of all values corresponding to an x in the domain D.

Example 1:

Suppose $f(x) = \frac{x+1}{x-1}$. Then: $f(2) = \frac{2+1}{2-1} = \frac{3}{1} = 3$ $f(-1) = \frac{-1+1}{-1-1} = \frac{0}{-2} = 0$ $f(2a-1) = \frac{2a-1+1}{2a-1-1} = \frac{2a}{2a-2} = \frac{a}{a-1}$ $f(\frac{1}{a}) = ?$

The domain of f is ? _____ Example 2: Let $g(x) = \frac{\sqrt{3x-3}}{x^2-x+6}$ Find the domain of g(x)

II. Graphs of Functions

Definition:

The graph of a function is the set of points (x, f(x)) for x in the domain D of f.

The Vertical Line Test:

A graph of points in the plane is the graph of a function if and only if every vertical line intersects the graph *at most* once.

Definitions:

A function is **increasing** on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.

A function is **decreasing** on an interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

A function is **constant** on an interval I if $f(x_1) = f(x_2)$ for all x_1, x_2 in I.

Example:

Find:

(a) f(4)

(b) x if f(x) = 4

(c) the domain of f

(d) the range of f

(e) the intervals where f(x) is increasing