Math 143 Polar Coordinates Problems

- 1. Change the following from polar coordinates to rectangular coordinates:
 - (a) $(5, \frac{\pi}{3})$

Recall that $x = r \cos \theta$ and $y = r \sin \theta$ Therefore, $x = 5 \cos(\frac{\pi}{3}) = 5(\frac{1}{2}) = \frac{5}{2}$. Similarly, $y = 5 \sin(\frac{\pi}{3}) = 5(\frac{\sqrt{3}}{2}) = \frac{5\sqrt{3}}{2}$.

Thus, the rectangular coordinate of this point is: $(\frac{5}{2}, \frac{5\sqrt{3}}{2})$.

(b) $(7, \frac{11\pi}{6})$

Recall that $x = r \cos \theta$ and $y = r \sin \theta$ Therefore, $x = 7 \cos(\frac{11\pi}{6}) = 7(\frac{\sqrt{3}}{2}) = \frac{7\sqrt{3}}{2}$. Similarly, $y == 7 \sin(\frac{11\pi}{6}) = 7(-\frac{1}{2}) = -\frac{7}{2}$.

Thus, the rectangular coordinate of this point is: $(\frac{7\sqrt{3}}{2}, -\frac{7}{2})$.

(c) $(-4, \frac{3\pi}{2})$

Note: This problem is probably easier to do just by plotting this point and using common sense, but formally, recall that $x = r \cos \theta$ and $y = r \sin \theta$. Therefore, $x = -4 \cos(\frac{3\pi}{2}) = -4(0) = 0$.

Similarly,
$$y = -4\sin(\frac{3\pi}{2}) = -4(-1) = 4.$$

Thus, the rectangular coordinate of this point is: (0, 4).

- 2. Change the following from rectangular coordinates to polar coordinates:
 - (a) (-5,0)

Here, we could one again just use common sense to find the polar coordinates. Formally, we can use the fact that $r = \sqrt{x^2 + y^2}$ and $\tan \theta = \frac{y}{x}$.

Therefore, $r = \sqrt{(-5)^2 + 0^2} = \sqrt{25} = 5$, and $\theta = \pi$. Notice that blindly taking $\tan^{-1}(\frac{0}{-5})$ would give us $\theta = 0$, which is incorrect, since it is in the wrong quadrant.

Thus, the coordinates of this point in polar coordiantes are: $(5, \pi)$.

(b) $(2, 2\sqrt{3})$

Here,
$$r = \sqrt{x^2 + y^2} = \sqrt{(2^2 + (2\sqrt{3})^2)^2} = \sqrt{4 + 12} = \sqrt{16} = 4.$$

Also, $\tan \theta = \frac{2\sqrt{3}}{2} = \sqrt{3}$, so $\theta_R = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$, which, since this is in the correct quadrant (quadrant 1), gives $\theta = \frac{\pi}{3}$.

Therefore, the coordinates of this point in polar coordiantes are: $(4, \frac{\pi}{3})$.

(c) (5, -7)

Here, $r = \sqrt{x^2 + y^2} = \sqrt{(5^2 + (-7)^2)^2} = \sqrt{25 + 49} = \sqrt{74}$. Also, $\tan \theta = -\frac{7}{5}$, so $\theta_R = \tan^{-1}(-\frac{7}{5})$, which, since this is in the correct quadrant (quadrant 2), gives $\theta = \tan^{-1}(-\frac{7}{5})$.

Therefore, the coordinates of this point in polar coordinates are: $(\sqrt{74}, \tan^{-1}(-\frac{7}{5}))$.

- 3. Write the following equations in polar coordinates:
 - (a) $x^2 + y^2 = 49$ Since $r^2 = x^2 + y^2$, substituting this equation becomes $r^2 = 49$, or r = 7.

(b) y = -3x

Recall that $x = r \cos \theta$ and $y = r \sin \theta$. Therefore, substituting, $r \sin \theta = -3r \cos \theta$, or $\sin \theta = -3 \cos \theta$. Then $\frac{\sin \theta}{\cos \theta} = -3$, or $\tan \theta = -3$. Thus, the equation becomes: $\theta = \tan^{-1}(-3)$

(c) y = x - 5

Again using the fact that $x = r \cos \theta$ and $y = r \sin \theta$, we substitute in order to obtain $r \sin \theta = r \cos \theta - 5$, or $r \sin \theta - r \cos \theta = -5$.

Then $r(\sin \theta - \cos \theta) = -5$, or $r = \frac{-5}{\sin \theta - \cos \theta} = \frac{5}{\cos \theta - \sin \theta}$ is the simplified polar form of this equation (d) $(x-1)^2 + y^2 = 1$

Again using the fact that $x = r \cos \theta$ and $y = r \sin \theta$, we substitute in order to obtain $(r \cos \theta - 1)^2 + (r \sin \theta)^2 = 1$, or $r^2 \cos^2 \theta - 2r \cos \theta + 1 + r^2 \sin^2 \theta = 1$. Then $r^2(\cos^2 \theta + \sin^2 \theta) - 2r \cos \theta = 0$, or $r^2 = 2r \cos \theta$ Hence $r = 2 \cos theta$ is the simplified polar form of this equation.

4. Graph the following polar equations:

(a)
$$r = 2\sin\theta$$

θ	$\sin \theta$	$r = 2\sin\theta$
0	0	0
$\frac{\pi}{6}$	$\frac{1}{2}$	1
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	1.414
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	1.7
$\frac{\pi}{2}$	1	2
$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	1.7
$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	1.414
$\frac{5\pi}{6}$	$\frac{1}{2}$	1
π	0	0

(b) $r = 1 + \cos \theta$

θ	$\cos \theta$	$r = 1 + \cos \theta$
0	1	2
$\frac{\pi}{6}$	$\frac{\sqrt{2}}{2}$	1.86
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	1.7
$\frac{\pi}{3}$	$\frac{1}{2}$	1.5
$\frac{\pi}{2}$	0	1
$\frac{2\pi}{3}$	$-\frac{1}{2}$.5
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$.3
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$.14
π	-1	0
$\frac{7\pi}{6}$	$-\frac{\sqrt{3}}{2}$.14
$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$.3
$\frac{4\pi}{3}$	$-\frac{1}{2}$.5
$\frac{3\pi}{2}$	0	1
$\frac{5\pi}{3}$	$\frac{1}{2}$	1.5
$\frac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	1.7
$\frac{11\pi}{6}$	$\frac{\sqrt{2}}{2}$	1.86
2π	1	2

(c) $r = 2\sin(2\theta)$

	-		(
θ	2θ	$\sin 2\theta$	$r = 2\sin(2\theta)$
0	0	0	0
$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{1}{2}$	1
$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	1.7
$\frac{\pi}{4}$	$\frac{\pi}{2}$	1	2
$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	1.7
$\frac{5\pi}{12}$	$\frac{5\pi}{6}$	$\frac{1}{2}$	1
$\frac{\pi}{2}$	π	0	0
$\frac{7\pi}{12}$	$\frac{7\pi}{6}$	$-\frac{1}{2}$	-1
$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	-1.7
$\frac{3\pi}{4}$	$\frac{3\pi}{2}$	-1	-2
$\frac{5\pi}{6}$	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	-1.7
$\frac{11\pi}{12}$	$\frac{11\pi}{6}$	$-\frac{1}{2}$	-1
π	2π	0	0

(d) $r = 2 + 4\cos\theta$

θ	$\cos \theta$	$4\cos\theta$	$r = 2 + 4\cos\theta$
0	1	4	6
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	3.4	5.4
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	2.8	4.8
$\frac{\pi}{3}$	$\frac{1}{2}$	2	4
$\frac{\pi}{2}$	0	0	2
$\frac{2\pi}{3}$	$-\frac{1}{2}$	-2	0
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	-2.8	8
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	-3.4	-1.4
π	-1	-4	-2

Continuing this from π to 2π traces out the other symmetric half of this graph, shown in the figure to the right.

