Math 143
Polar Coordinates Problems

1. Change the following from polar coordinates to rectangular coordinates:

(a) (5,%)
Recall that z = rcosf and y = rsinf
Therefore, z = 5cos(5) = 5(3) = 5.

Similarly, y == 5sin(%) = 5(\[) = 57\/3

Thus, the rectangular coordinate of this point is: (g, %)
(b) (7, 45")

Recall that £ = rcosf and y = rsinf

Therefore, = 7 cos(1E) = 7(‘f) #

Similarly, y == 7sin(1{%) = 7(-3) = —I

Thus, the rectangular coordinate of this point is: (77\/3, —%)

(¢) (—4,%)
Note: This problem is probably easier to do just by plotting this point and using common sense, but
formally, recall that x = r cos# and y = rsin 6.

Therefore, z = —4 cos(2F) = —4(0) = 0.
Similarly, y == —4sin(3) = —4(—1) = 4.
Thus, the rectangular coordinate of this point is: (0,4).

2. Change the following from rectangular coordinates to polar coordinates:

(a) (=5,0)
Here, we could one again just use common sense to find the polar coordinates. Formally, we can use
the fact that r = /22 442 and tanf = 2.

Therefore, r = \/(—5)2 + 02 = v/25 = 5, and 6§ = 7. Notice that blindly taking tan—'(-%) would give
us # = 0, which is incorrect, since it is in the wrong quadrant.
Thus, the coordinates of this point in polar coordiantes are: (5, ).

(b) (2,2V/3)
Here, 7 = /22 + 92 = /(22 + (2V/3)2 = V4 + 12 = V16 = 4.

Also, tanf = Q\f = /3,50 O = tan"!(v/3) = %, which, since this is in the correct quadrant (quadrant
1), gives 0 = %

Therefore, the coordinates of this point in polar coordiantes are: (4, %).
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(c) (5,-7)
Here, r = /22 + 42 = \/(52 + (—7)2 = /25 + 49 = /74
Also, tanf = —%, so Or = tan~!(— %), which, since this is in the correct quadrant (quadrant 2), gives
0 = tan=!(—1).
Therefore, the coordinates of this point in polar coordiantes are: (v/74,tan™!(—1)).

3. Write the following equations in polar coordinates:

(a) 2%+ y? =49
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Since r? = 22 + 92, substituting this equation becomes 12 = 49, or r = 7.



(b) y= -3z

Recall that £ = rcosf and y = rsinf. Therefore, substituting, r sin = —3r cosf, or sin = —3 cos 6.
Then zg;g = —3, or tan# = —3. Thus, the equation becomes:
0 = tan—!(—3)

(c) y=z-5
Again using the fact that = r cos 6 and y = rsin 6, we substitute in order to obtain rsin = r cos § — 5,
or rsinf — rcosf = —5.
Then r(sinf —cosfl) = =5, or r = 0 = — eisine is the simplified polar form of this equation

(@) (z—1)°+y*=1
Again using the fact that = rcosf and y = rsin @, we substitute in order to obtain
(rcosf —1)%2 + (rsinf)? =1, or r2cos? 0 — 2rcosf + 1 4+ r?sin? 0 = 1.
Then 72 (cos? 6 4 sin? 0) — 2r cos@ = 0, or 2 = 2r cos 6

Hence r = 2 costheta is the simplified polar form of this equation.

4. Graph the following polar equations:
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(¢) 7= 2sin(20)
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Continuing this from 7 to 27 traces
out the other two “petals” of this
graph, shown in the figure to the right.

(d) r=2+4cosb
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Continuing this from 7 to 27 traces
out the other symmetric half of this
graph, shown in the figure to the right.



