Name:

- 1. In the space below, carefully draw the graphs of the following:
 - (a) (3 points) $y = 3\tan(\frac{1}{2}t) 2$

Notice that this graph have been stretched vertically by a factor of 3, and shifted down 2. Also, the period is: $\frac{\pi}{\frac{1}{2}} = 2\pi$. We also see that if $-\frac{\pi}{2} \le \frac{1}{2}t \le \frac{\pi}{2}$, then $-\pi \le t \le \pi$, so the asymptotes to this graph are all multiples of π .

Therefore, the graph is as follows:

(b) (4 points) $y = -2 \sec(2t - \frac{\pi}{2}) + 1$

Recall, that the easiest way to graph this is to look at the related function $y = -2\cos(2t - \frac{\pi}{2}) + 1$ For this graph, the amplitude is 2, the period is $\frac{2\pi}{2} = \pi$, the midline is y = 1, the phase shift is $-\frac{-\frac{\pi}{2}}{2} = \frac{\pi}{4}$, and the graph has been reflected vertically. We also see that since $0 \le 2t - \frac{\pi}{2} \le 2\pi$, then $\frac{\pi}{2} \le 2t \le \frac{5\pi}{2}$, so $\frac{\pi}{4} \le t \le \frac{5\pi}{4}$ gives one period of this graph. Therefore, the graph is as follows:

2. (3 points) Find all missing sides and angles in the triangle below. Round your answers in two decimal places.

To find c, we use the Pythagorean Theorem: $c^2 = 50^2 + 40^2$, so $c = \sqrt{2500 + 1600} \approx 64.03$ Next, notice that $\tan \alpha = \frac{40}{50}$, so $\alpha = \tan^{-1}(\frac{40}{50}) \approx 38.66^{\circ}$. Finally, recall that $\beta = 90^{\circ} - \alpha^{\circ} \approx 90^{\circ} - 38.66^{\circ} = 51.34^{\circ}$