- 1. Find the exact value of the following logarithmic expressions:
 - (a) $\log_2(32)$ (c) $\log_5(1)$
 - (b) $\log_3\left(\frac{1}{27}\right)$ (d) $\log_4 32$

2. Use the laws of logarithms to simplify the expression: $\ln\left(\frac{x^2(x-1)^{\frac{5}{2}}}{(x-4)^3}\right)$

- 3. (a) Suppose you invest \$10,000 in a savings account that pays 3% annual interest compounded monthly. How much money will be in the account after 6 years?
 - (b) How long would it take \$5,000 invested at 6% annual interest compounded continuously to triple?
 - (c) Find the interest rate needed for an investment of \$2,000 to double in 6 years if the interest is comounded quarterly.
- 4. Compute the derivatives of the following functions. You do not need to simplify your answers.

(a)
$$f(x) = e^{3x^2}$$

(b)
$$g(x) = \ln(3x^2 - 4x + 6)$$

(c)
$$h(x) = (x^2 + 1)e^{x^2 + 1}$$

(d)
$$k(x) = x^2 \ln(e^x + 1)$$

(e)
$$l(x) = (3x^2 + 1)^5(x^2 - 1)^{\frac{3}{2}}(4x + 3)^{\frac{5}{3}}$$

- 5. Find the tangent line to $f(x) = x \ln(2x)$ when $x = \frac{1}{2}$
- 6. Find the absolute extrema of $g(t) = t^2 e^{2t}$ on the interval [-2, 2].
- 7. Evaluate the following integrals:

(a)
$$\int 6x^3 - 4x^{\frac{1}{2}} dx$$

(b) $\int \frac{4x^3 - 3x^2 + 2x}{2x^2} dx$
(c) $\int_{-1}^{1} 3x^5 - 4x^3 dx$
(d) $\int_{0}^{4} e^{3x} + x^{-\frac{1}{2}} dx$

- 8. Find the average value of $f(x) = x^2 \frac{1}{x^2}$ for $1 \le x \le 3$.
- 9. Find the area of the region enclosed by the graphs $f(x) = x^2 4$ and $g(x) = 4 x^2$.