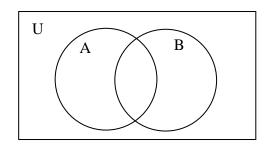
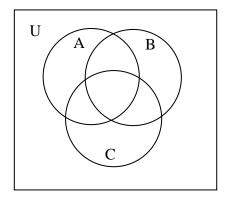
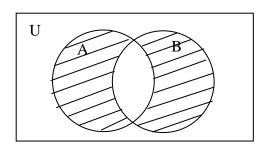
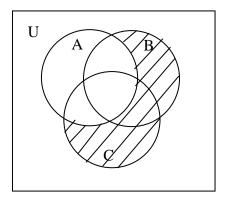

1.5A Set Operations

- 1. Assume $A = \{1, 3, 5, 7\}$, $B = \{2, 5, 7, 8\}$ and $C = \{1, 3, 6\}$ are subsets of the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Determine each of the following (use good notation and circle your answers):
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) $A \cap C$
 - (d) A B
 - (e) $A' \cup B'$
 - (f) $A' \cap (B \cup C')$
 - (g) $(A \cap B) \cup (A \cap C)$
 - (h) $A' \cap B'$
 - (i) $(A \cup B)'$
 - $(j) \quad (A-C) \cup (B-C)$
 - (k) Show that in this problem, $n(A \cup B) = n(A) + n(B) n(A \cap B)$ is satisfied.

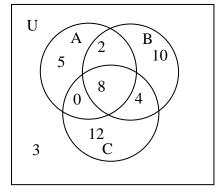

- 2. In each Venn Diagram below, shade the region associated with the given set.
 - a) $(A \cup B') A$


c) $A \cap (B \cup C')'$


b) $A \cup (B \cup A)'$



d) $(B \cap A)' \cup (C - A)$



3. In each, name the shaded region using the letters A, B, C, and the set operations.

- 4. The <u>number of elements</u> is written in each region of the following Venn diagram. Find the following:
- a. $n(A \cup B)$
- b. n(C')
- c. n(U)
- d. $n((A \cup C) (B \cup C))$
- e. $n((A \cap C) B)$

