(Section 2.5B Supplemental)

2.5B Supplemental

As arguments become more complicated it is often impractical to check an argument for validity by using truth tables. Instead of using truth tables to test whether a conclusion is valid, mathematicians often use a formal proof. We will restrict our formal proofs to those that are called direct proofs. By a direct proof we will mean a sequence of true statements such that:

- i) the statement is a premise which is given to be true, or
- the statement is the conclusion of a valid argument from a given list of valid arguments such that its premises are from preceding statements in the sequence or
- *iii*) the statement is a logically equivalent statement to a preceding statement in the sequence, and such that
- iv) the last statement in the sequence is the statement (conclusion) to be proved.

Some useful valid arguments (forms)

- 1) Law of Detachment $p \rightarrow q$, p, $\therefore q$
- 2) Law of Contraposition $p \rightarrow q, \sim q, :: \sim p$
- 3) Law of Syllogism $p \to q, q \to r, \therefore p \to r$
- 4) Disjunctive Syllogism $p \lor q$, $\sim p$, $\therefore q$
- 5) Simplification $p \wedge q$, $\therefore p$ (or could conclude q)
- 6) Addition $p, : p \vee q$

Some logically equivalent statements (forms)

- 1) Double negation p and $\sim (\sim p)$
- 2) Contraposition $p \rightarrow q$ and $\sim q \rightarrow \sim p$
- 3) De Morgan's laws i) $\sim (p \wedge q)$ and $\sim p \vee \sim q$
 - *ii*) $\sim (p \vee q)$ and $\sim p \wedge \sim q$
- 4) Conditionals to Disjunctions $p \rightarrow q$ and $\sim p \vee q$
- 5) Commutative $p \wedge q$ and $q \wedge p$, also $p \vee q$ and $q \vee p$

1. Examples of formal proofs.

a) Construct a "formal proof" in order to establish that the following argument is valid:

Solution:

$$(q \lor r) \to p$$

$$\sim p$$

$$s \to r$$

$$\therefore \sim s$$

Statement	Reason
1. $(q \lor r) \to p$	premise
2. ~ <i>p</i>	premise
3. $s \rightarrow r$	premise
4. $\sim (q \vee r)$	1, 2 law of contraposition
5. $\sim q \wedge \sim r$	4, De Morgan
6. ~ <i>r</i>	5 simplication
7. $\therefore \sim s$	3, 6 law of contraposition

b) Following is a possible list of statements in a formal proof of the argument form:

$$\begin{array}{c}
p \to q \\
\sim q \\
p \lor s \\
\vdots \quad s
\end{array}$$

Provide reasons for each statement.

Statement

Reason

1.
$$p \rightarrow q$$
2. $p \lor s$

3.
$$\sim p \rightarrow s$$

4.
$$\sim q \rightarrow \sim p$$

5.
$$\sim q \rightarrow s$$

Some practice examples

a)
$$p \to q$$

$$r \to \sim q$$

$$\therefore p \to \sim r$$

$$\begin{array}{l}
\sim s \\
p \to r \\
\underline{(p \to q) \to s} \\
\therefore r
\end{array}$$

$$\begin{array}{cccc} p \to q & b) & \sim s & c) & \sim p \to (q \lor p) \\ \frac{r \to \sim q}{\therefore p \to \sim r} & \frac{p \to r}{\therefore q} & \frac{\sim p}{\therefore q} \end{array}$$