

Exam 1 - Practice Problems

- 1. Given the points A:(4,-2) and B:(-2,7):
 - (a) Find an equation for the line containing A and B
 - (b) Find the line that is perpendicular to the line you found in part (a) and containing the point (1, -1)
- 2. Find solutions to the inequality: $\frac{x^2-1}{x^2+x-6} \le 0$.
- 3. Given the function $f(x) = \frac{1}{x-2}$
 - (a) What is the domain of f? Give your answer in interval notation.
 - (b) Find f(5) and f(2a+4)
 - (c) Find $\frac{f(a+h)-f(a)}{h}$ (be sure to simplify your answer).
- 4. Given that $f(x) = \frac{1}{2x-3}$ and $g(x) = \sqrt{x^2-9}$
 - (a) Find $f \circ g(2)$
 - (b) Find the domain of $\frac{g}{f}$? Give your answer in interval notation.
- 5. Find the exact value of each of the following:
 - (a) $\sin\left(\frac{7\pi}{4}\right)$
 - (b) $\cos\left(\frac{4\pi}{3}\right)$
 - (c) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$
 - (d) $\cos^{-1}(-1)$
 - (e) $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
- 6. Find all solutions to the following equations. Give the exact answers.
 - (a) $2\sin 3x = \sqrt{3}$
 - (b) $\sin^2(x) \sin(x) = 0$
- 7. Find the values of x, y and z in the triangle shown below:

8. A function f is graphed below. Find the following:

- (a) f(-5), f(-3), and f(4)
- (b) find the domain and range of f
- (c) find the intervals where f is decreasing
- (d) find $\lim_{x \to 4} f(x)$
- \mathbf{x} (e) find $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$
 - (f) find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$
 - (g) find the points where f(x) is discontinuous, and classify each point of discontinuity.

9. Find the following limits:

(a)
$$\lim_{x \to 2} \frac{3x + 7}{\sqrt{5x - 1}}$$

(b)
$$\lim_{x \to \frac{3}{2}} \frac{2x^2 + x - 6}{4x^2 - 4x - 3}$$

(c)
$$\lim_{x \to 2} \frac{x^4 - 16}{x^2 - x - 2}$$

(d)
$$\lim_{x \to -2^+} \sqrt{x+2}$$

(e)
$$\lim_{x \to 3^+} \frac{4}{\sqrt{x-3}}$$

(f)
$$\lim_{x \to \infty} \frac{(3x-5)(2x-3)}{(2x+1)(3x-2)}$$

(g)
$$\lim_{x \to \infty} \frac{(3x-5)(2x-3)}{(2x+1)}$$

10. Given the function

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 4 - x^2 & \text{if } x > 1 \end{cases}$$

- (a) Graph f(x).
- (b) Find $\lim_{x\to 1^-} f(x)$, $\lim_{x\to 1^+} f(x)$, and $\lim_{x\to 1} f(x)$
- (c) Is f(x) continuous at x = 1? Justify your answer.
- 11. Given that $f(x) = x^3 + 5$, $\lim_{x \to 2} f(x) = 13$, and $\epsilon = .01$, find the largest δ such that if $0 < |x 2| < \delta$, then $|f(x) 13| < \epsilon$.
- 12. Use the formal definition of a limit to prove that $\lim_{x\to 6} 5x 21 = 9$.
- 13. Let $f(x) = \frac{x^2 x 2}{x^2 2x}$.
 - (a) Find the values of x at which f is discontinuous.
 - (b) Find all vertical and horizontal asymptotes of f.
- 14. Find the x values at which $f(x) = \frac{\sqrt{9-x^2}}{x^4-16}$ is continuous.
- 15. Use the Intermediate Value Theorem to show $x^5 3x^4 2x^3 x + 1 = 0$ has a solution between 0 and 1.