Math 261 Exam 1 - Practice Problem Solutions

- 1. Given the points A : (4, -2) and B : (-2, 7):
 - (a) Find an equation for the line containing A and B $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - (-2)}{-2 - 4} = \frac{9}{-6} = -\frac{3}{2}.$ Using the point (-2,7) and the point-slope formula, $y - (7) = -\frac{3}{2}(x+2)$, or $y - 7 = -\frac{3}{2}x - 3$. Therefore, $y = -\frac{3}{2}x + 4$
 - (b) Find the line that is perpendicular to the line you found in part (a) and containing the point (1, −1) Since the slope of the previous line is m₁ = -³/₂, a line that is perpendicular to the previous line has slope equal to the negative reciprocal m₂ = -¹/_{m₁} = ²/₃. Also, since the line passes through (1, −1), the equation of the line is given by: y + 1 = ²/₃(x − 1) = ²/₃x − ²/₃ Thus, y = ²/₃x − ⁵/₃
- 2. Find solutions to the inequality: $\frac{x^2 1}{x^2 + x 6} \le 0.$ Factoring, we have: $\frac{(x+1)(x-1)}{(x+3)(x-2)} \le 0.$

Notice that the numerator is zero when x = 1 or x = -1, and the denominator is zero when x = -3 or x = 2. Therefore, using sign analysis, we have the following sign diagram:

Thus the solution to this inequality, in interval notation, is: $(-3, -1] \cup [1, 2)$

- 3. Given the function $f(x) = \frac{1}{x-2}$
 - (a) What is the domain of f? Give your answer in interval notation. Notice that f(x) is defined except when x = 2. Therefore, the domain, in interval notation, is: $(-\infty, 2) \cup (2, \infty)$
 - (b) Find f(5) and f(2a+4) $f(5) = \frac{1}{5-2} = \frac{1}{3}$. Similarly, $f(2a+4) = \frac{1}{(2a+4)-2} = \frac{1}{2a+2} = \frac{1}{2(a+1)}$

(c) Find $\frac{f(a+h) - f(a)}{h}$ (be sure to simplify your answer). $\frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h-2} - \frac{1}{a-2}}{h} = \frac{\frac{a-2}{a+h-2} - \frac{a+h-2}{a-2}}{h} = \frac{(a-2) - (a+h-2)}{(a+h-2)(a-2)} \cdot \frac{1}{h} = \frac{a-2-a-h+2}{(a+h-2)(a-2)} \cdot \frac{1}{h}$

$$\frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h-2} - \frac{1}{a-2}}{h} = \frac{\frac{1}{a+h-2} - \frac{1}{a-2}}{h} = \frac{(a-2) - (a+h-2)}{(a+h-2)(a-2)} \cdot \frac{1}{h} = \frac{a-2-a-h+2}{(a+h-2)(a-2)} \cdot \frac{1}{h} = \frac{-h}{(a+h-2)(a-2)} \cdot \frac{1}{h} = \frac{-1}{(a+h-2)(a-2)}$$

- 4. Given that $f(x) = \frac{1}{2x-3}$ and $g(x) = \sqrt{x^2-9}$
 - (a) Find $f \circ g(2)$ $f \circ g(2) = f(g(2)) = f(\sqrt{4-9}) = f(\sqrt{-5})$, which is undefined.
 - (b) Find the domain of $\frac{g}{f}$? Give your answer in interval notation.

To be in the domain of $\frac{g}{f}$, an x-value must be in the domain of both f(x) and g(x), and we must also have $g(x) \neq 0$.

The domain of f(x) is all x except when 2x - 3 = 0, or 2x = 3. Thus, the domain is $x \neq \frac{3}{2}$ The domain of g(x) is all x for which $x^2 - 9 \ge 0$, or $x^2 \ge 9$. Thus, we need $|x| \ge 3$. Hence $x \ge 3$ or $x \le -3$. Finally, we need $g(x) \ne 0$, so $x^2 \ne 9$, or $x \ne 3$ and $x \ne -3$ Combining these, the domain is: $(-\infty, -3) \cup (3, \infty)$

- 5. Find the exact value of each of the following:
 - (a) $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$
 - (b) $\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$
 - (c) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
 - (d) $\cos^{-1}(-1) = \pi$
 - (e) $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$
- 6. Find all solutions to the following equations. Give the exact answers.
 - (a) $2\sin 3x = \sqrt{3}$ $\sin 3x = \frac{\sqrt{3}}{2}$, so either $3x = \frac{\pi}{3} + 2\pi k$ or $3x = \frac{2\pi}{3} + 2\pi k$ Hence $x = \frac{\pi}{9} + \frac{2\pi}{3}k$ or $x = \frac{2\pi}{9} + \frac{2\pi}{3}k$
 - (b) $\sin^2(x) \sin(x) = 0$ Factoring, $\sin x (\sin x - 1) = 0$, so $\sin x = 0$ or $\sin x = 1$ Therefore, $x = 0 + 2\pi k$ or $x = \pi + 2\pi k$ or $x = \frac{\pi}{2} + 2\pi k$
- 7. Find the values of x, y and z in the triangle shown below:

First, $z = 180 - 23 - 90 = 67^{\circ}$

Next, $\sin 23^\circ = \frac{y}{6}$, so $y = 6 \sin 23^\circ \approx 2.3444$

Similarly, $\cos 23^\circ = \frac{x}{6}$, so $x = 6 \cos 23^\circ \approx 5.5230$ (or we could use the Pythagorean Theorem to find the third side).

8. A function f is graphed below. Find the following:

- (a) f(-5), f(-3), and f(4)From the graph we see f(-5) = 0, f(-3) = -2, and f(4) = 2
- (b) find the domain and range of fDomain: $(-\infty, 2) \cup (2, \infty)$ Range: $(-3, \infty)$
- (c) find the intervals where f is decreasing Decreasing: $(-\infty, -5) \cup (2, 4)$
- (d) find $\lim_{x \to 4} f(x)$ $\lim_{x \to 4} f(x) = -3$

(e) find
$$\lim_{x \to 2^{-}} f(x)$$
 and $\lim_{x \to 2^{+}} f(x)$
 $\lim_{x \to 2^{-}} f(x) = \infty$ and $\lim_{x \to 2^{+}} f(x) = 1$
(f) find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$

$$\lim_{x \to -\infty} f(x) = 1$$
 and $\lim_{x \to \infty} f(x) = 3$

(g) find the points where f(x) is discontinuous, and classify each point of discontinuity.

Points of discontinuity:

- x = -3 (jump discontinuity)
- x = 2 (infinite discontinuity)
- x = 4 (removable discontinuity)

9. Find the following limits:

(a)
$$\lim_{x \to 2} \frac{3x+7}{\sqrt{5x-1}} = \frac{3(2)+7}{\sqrt{5(2)-1}} = \frac{13}{\sqrt{9}} = \frac{13}{3}$$

(b)
$$\lim_{x \to \frac{3}{2}} \frac{2x^2 + x - 6}{4x^2 - 4x - 3} = \lim_{x \to \frac{3}{2}} \frac{(2x - 3)(x + 2)}{(2x - 3)(2x + 1)} = \lim_{x \to \frac{3}{2}} \frac{x + 2}{2x + 1} = \frac{\frac{3}{2} + 2}{(2)\frac{3}{2} + 1} = \frac{\frac{7}{2}}{4} = \frac{7}{8}$$

(c)
$$\lim_{x \to 2} \frac{x^2 - 16}{x^2 - x - 2} = \lim_{x \to 2} \frac{(x^2 + 4)(x^2 - 4)}{(x - 2)(x + 1)} = \lim_{x \to 2} \frac{(x^2 + 4)(x - 2)(x + 2)}{(x - 2)(x + 1)} = \lim_{x \to 2} \frac{(x^2 + 4)(x + 2)}{x + 1} = \frac{(2^2 + 4)(2 + 2)}{2 + 1} = \frac{(8)(x - 2)(x + 1)}{3}$$
(d)
$$\lim_{x \to 2} \sqrt{x + 2}$$

Notice that
$$\sqrt{x+2}$$
 is defined for $x \ge -2$. Therefore, $\lim_{x \to -2^+} \sqrt{x+2} = \sqrt{-2+2} = 0$

(e)
$$\lim_{x \to 3^+} \frac{4}{\sqrt{x-3}}$$

Notice that for x > 3, $\sqrt{x-3} > 0$. Therefore, $\lim_{x \to 3^+} \frac{4}{\sqrt{x-3}} = \infty$

(f)
$$\lim_{x \to \infty} \frac{(3x-5)(2x-3)}{(2x+1)(3x-2)} = \lim_{x \to \infty} \frac{6x^2 - 19x + 15}{6x^2 - x - 2} = \lim_{x \to \infty} \frac{x^2(6 - \frac{19}{x} + \frac{15}{x^2})}{x^2(6 - \frac{1}{x} - \frac{2}{x^2})} = \lim_{x \to \infty} \frac{(6 - \frac{19}{x} + \frac{15}{x^2})}{(6 - \frac{1}{x} - \frac{2}{x^2})} = \frac{6}{6} = 1$$
(g)
$$\lim_{x \to \infty} \frac{(3x-5)(2x-3)}{(2x+1)} = \lim_{x \to \infty} \frac{6x^2 - 19x + 15}{(2x+1)} = \lim_{x \to \infty} \frac{6x - 19 + \frac{15}{x}}{(2x+1)} = \lim_{x \to \infty} \frac{6x - 19}{(2x+1)} = \lim_{x \to \infty} \frac{6x - 19}{(2x+1)}$$

10. Given the function

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ 2 & \text{if } x = 1\\ 4 - x^2 & \text{if } x > 1 \end{cases}$$

11. Given that $f(x) = x^3 + 5$, $\lim_{x \to 2} f(x) = 13$, and $\epsilon = .01$, find the largest δ such that if $0 < |x - 2| < \delta$, then $|f(x) - 13| < \epsilon$. If $|f(x) - 13| < \epsilon$, then $|x^3 + 5 - 13| < \epsilon$, or $|x^3 - 8| < .01$ That is, $-.01 < x^3 - 8 < .01$, or $7.99 < x^3 < 8.01$. Thus $\sqrt[3]{7.99} < x < \sqrt[3]{8.01}$ Notice that $2 - \sqrt[3]{7.99} \approx -.000833681$ and $\sqrt[3]{8.01} - 2 \approx .000832986$ Then the largest δ that works is $\delta = \sqrt[3]{8.01} - 2$ 12. Use the formal definition of a limit to prove that $\lim_{x\to 6} 5x - 21 = 9$. Let $\epsilon > 0$ be given and suppose that $|f(x) - 9| < \epsilon$. Then $|5x - 21 - 9| = |5x - 30| < \epsilon$. But then $5|x - 6| < \epsilon$, so $|x - 6| < \frac{\epsilon}{5}$.

Therefore, let $\delta \leq \frac{\epsilon}{5}$, and suppose $|x-6| < \delta$.

Then $5|x-6| < 5\delta \le \epsilon$. Therefore $|5x-30| = |5x-21-9| < \epsilon$, or $|f(x)-9| < \epsilon$.

Thus $\lim_{x \to 6} 5x - 9 = 21$

13. Let $f(x) = \frac{x^2 - x - 2}{x^2 - 2x}$.

- (a) Find the values of x at which f is discontinuous. Factoring, $f(x) = \frac{x^2 - x - 2}{x^2 - 2x} = \frac{(x - 2)(x + 1)}{x(x - 2)}$ Therefore, we can see that f(x) is discontinuous at x = 0 and x - 2
- (b) Find all vertical and horizontal asymptotes of f. Since we can cancel the two (x - 2) terms, there is **not** a vertical asymptote when x = 2The only vertical asymptote is at x = 0.

To find the horizontal asymptote, we compute $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 - x - 2}{x^2 - 2x} = \lim_{x \to \infty} \frac{1 - \frac{1}{x} - \frac{2}{x^2}}{1 - \frac{2}{x}} = 1.$ Thus, y = 1 is the horizontal asymptote of f(x).

- 14. Find the x values at which $f(x) = \frac{\sqrt{9-x^2}}{x^4-16}$ is continuous. First, notice that that $x^4 - 16 = (x^2+4)(x^2-4) = (x^2+4)(x-2)(x+2)$, so f(x) is undefined when x = 2 and x = -2. Also, for f(x) to be defined, we must have $9 - x^2 \ge 0$, or $x^2 \le 9$. Thus $-3 \ge x \ge 3$. Therefore, f(x) is continuous on the intervals: $[-3, -2) \cup (-2, 2) \cup (2, 3]$
- 15. Use the Intermediate Value Theorem to show $x^5 3x^4 2x^3 x + 1 = 0$ has a solution between 0 and 1. Let $f(x) = x^5 - 3x^4 - 2x^3 - x + 1$. Notice that f is continuous since it is a polynomial. Also, f(0) = 1 and f(1) = -4. Thus, by the IVT, for every -4 < w < 1, there is a c satisfying $0 \le c \le 1$ with f(c) = w. In particular, f(c) = 0 for some c between zero and 1.