Properties of the Definite Integral

Definite Integrals

Approximating Area Using Partitions:

Given a function f on an interval [a, b], we can approximate area using partitions that do not necessarily have rectangles all of the same width. A partition P of the interval [a, b] of size n is a set of numbers $a = x_0 < x_1 < x_2 < ... < x_n - 1 < x_n = b$. $\Delta x_k = x_k = x_{k-1}$ is the width of the kth subinterval, and $\|P\|$, the norm of the partition P, is the width of the widest of all the subintervals in P.

The Riemann sum of f on [a, b] for a partition P is $R_P = \sum_{k=1}^n f(w_k) \Delta x$, where w_k is some point in the kth subinterval of the partition P.

If $\lim_{\|P\|\to 0} \sum_{k=1}^n f(w_k) \Delta x = L$ for some real number L, then we say that f is integrable on [a,b], and the definite integral of f on [a,b] is:

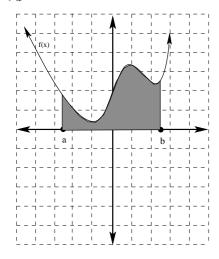
$$\int_{a}^{b} f(x)dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(w_{k}) \Delta x = L$$

The Fundamental Theorem of Calculus:

Let f be a continuous function on the interval [a, b]:

- (a) If G is the function defined by $\int_a^x f(t) dt$ for every x in [a, b], then G is an antiderivative of f on [a, b].
- (b) If F is any antiderivative of f on [a, b], then:

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$



Example:
$$\int_{1}^{3} 3x^{2} dx = x^{3} \Big|_{1}^{3} = 3^{3} - 1^{3} = 27 - 1 = 26$$

Properties of Definite Integrals

$$1. \int_a^b c \ dx = c(b-a)$$

$$2. \int_a^a f(x) \ dx = 0$$

3.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

4.
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
, for any constant c

5.
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

6.
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

7. If f is integrable on
$$[a,b]$$
 and $f(x) \ge 0$ for every x in $[a,b]$, then $\int_a^b f(x) \ dx \ge 0$

8. If f and g are integrable on
$$[a,b]$$
 and $f(x) \ge g(x)$ for every x in $[a,b]$, then $\int_a^b f(x) \ dx \ge \int_a^b g(x) \ dx$

The Mean Value Theorem for Definite Integrals:

If f is continuous on [a, b], then there is a number z in the open interval (a, b) such that $\int_a^b f(x) \ dx = f(z)(b-a)$

The Average Value of a Function

Let f be a function that is integrable on an interval [a,b]. Then the **average value** of f over [a,b] is $\frac{1}{b-a}\int_a^b f(x) \ dx$.