Spring 2008 Math 261 Lab 19

Definite Integrals Name:

1. Assume that
$$\int_{2}^{5} f(x)dx = 6$$
, $\int_{-1}^{2} f(x)dx = 9$, $\int_{-1}^{5} g(x)dx = 2$, and $\int_{2}^{5} g(x)dx = -8$. Find
(a) $\int_{-1}^{5} f(x)dx$ (c) $\int_{2}^{5} [3f(x) - 2g(x)] dx$

(b)
$$\int_{-1}^{2} g(x) dx$$
 (d) $\int_{-1}^{5} [2g(x) + f(x)] dx$

2. Find the derivative of each of the following.

(a)
$$\frac{d}{dx} \int_{3}^{5x^2} \sqrt{4t - 1} dt$$
 (b) $\frac{d}{dx} \int_{7x - 3}^{3x + 1} \frac{1}{t} dt$

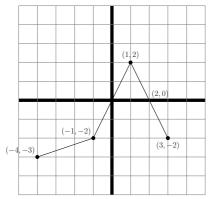
3. Evaluate the following definite integrals.

(a)
$$\int_{-2}^{1} (2x-3) dx$$
 (e) $\int_{-1}^{0} \frac{8x+22}{(2x^2+11x-5)^2} dx$

(b)
$$\int_{1}^{4} (x\sqrt{x}-2) dx$$
 (f) $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin(2x)\cos(2x) dx$

(c)
$$\int_{1}^{2} \left(\frac{x-1}{x^{3}}\right) dx$$
 (g) $\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} \csc(x) \cot(x) dx$

(d)
$$\int_{3}^{5} \sqrt{2x-5} \, dx$$
 (h) $\int_{\frac{\pi}{9}}^{\frac{\pi}{9}} \sin\left(x^{2}\right) \, dx$


Page 2

Show all Work for Credit

GIVE EXACT ANSWERS UNLESS OTHERWISE NOTED

4. (From the 2005 AP Calculus AB exam.) The graph of the function f below consists of three line segments.

Name:

(a) Let g be the function given by $g(x) = \int_{-4}^{x} f(t) dt$. Find the value of each of the following or state that it does not exist.

(i)
$$g(-1)$$
 (iii) $g''(-1)$

(ii)
$$g'(-1)$$
 (iv) $g''(2)$

(b) For the function g defined above, find the x-coordinate of each point of inflection of the graph of g on the open interval -4 < x < 3. Show your work and/or reasoning.

5. (Adapted from the 2007 AP Calculus AB exam.) Assume that the functions f and g are differentiable for all real numbers, and that g is strictly increasing. The table below gives values of the functions and their first derivatives at selected values of x. Let w be the function given by $w(x) = \int_{1}^{g(x)} f(t) dt$. Find the value of w'(3).

Name:

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

- 6. (From the 2005 AP Calculus AB exam.) The tide removes sand from Sandy Point Beach at a rate modeled by the function R. A pumping station adds sand to the beach at a rate modeled by the function S. Both R(t) and S(t) have units of cubic yards per hour and t is measured in hours for $0 \le t \le 6$. At time t = 0, the beach contains 2500 cubic yards of sand.
 - (a) Write an expression for Y(t), the total number of cubic yards of sand on the beach at time t, in terms of R and S.

(b) Let $R(t) = 2 + 5 \sin\left(\frac{4\pi t}{25}\right)$. How much sand will the tide remove from the beach during this 6-hour period? Indicate the units of measure and give your answer rounded to the nearest tenth.