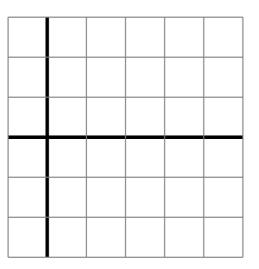
Spring 2008 Math 261 Lab 23 Capstone B Name:

1. (From the 2006 AP Calculus AB exam.) Rocket A has positive velocity v(t) after being launched upward from an initial height of 0 feet at time t = 0 seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \le t \le 80$ seconds, as shown in the table below.

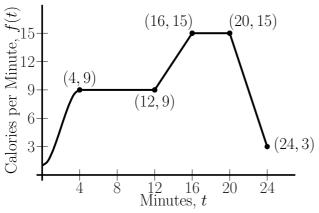
								60	1	
v(t) (fe	eet per second)	5	14	22	29	35	40	44	47	49

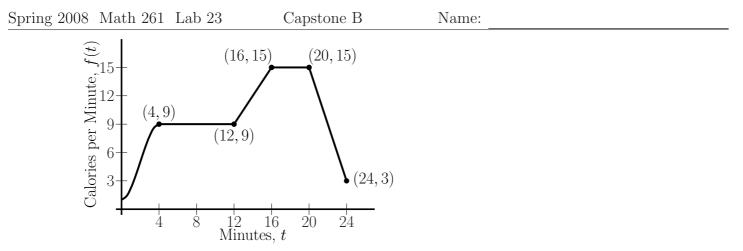

- (a) Find the average acceleration of rocket A over the time interval $0 \le t \le 80$ seconds. Indicate units of measure.
- (b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) dt$ in terms of the rocket's flight.
- (c) Use Simpson's rule with the six subintervals indicated by the table to approximate $\int_{10}^{70} v(t) dt$.

(d) Rocket B is launched upward with an acceleration of $a(t) = \frac{3}{\sqrt{t+1}}$ feet per second per second. At time t = 0 seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time t = 80 seconds? Explain your answer. 2. (From the 2005 AP Calculus AB exam.) Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table below. (DNE stands for "does not exist".)

Name:

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive


(a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer. (b) On the axes provided, sketch the graph of a function that has all the characteristics of f.


(c) Let g be the function defined by $g(x) = \int_{1}^{x} f(t) dt$ on the open interval (0,4). For 0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.

3. (From the 2006 AP Calculus AB exam.) The rate, in calories per minute, at which a person using an exercise machine burns calories is modeled by the function f. In the figure below, $f(t) = -\frac{1}{4}t^3 + \frac{3}{2}t^2 + 1$ for $0 \le t \le 4$ and f is piecewise linear for $4 \le t \le 24$. (Note that this problem continues on the next page.)

- (a) Find each of the following limits or state that it does not exist.
 - (i) $\lim_{x \to 2} f(x)$ (vi) $\lim_{x \to 24^{-}} f(x)$ (xi) $\lim_{x \to 4} f'(x)$ (xvi) $\lim_{x \to 18} f'(x)$
 - (ii) $\lim_{x \to 4} f(x)$ (vii) $\lim_{x \to 0^+} f'(x)$ (xii) $\lim_{x \to 12^-} f'(x)$ (xvii) $\lim_{x \to 22} f'(x)$
 - (iii) $\lim_{x \to 8} f(x)$ (viii) $\lim_{x \to 2} f'(x)$ (xiii) $\lim_{x \to 12^+} f'(x)$ (xviii) $\lim_{x \to 24^-} f'(x)$
 - (iv) $\lim_{x \to 12} f(x)$ (ix) $\lim_{x \to 4^{-}} f'(x)$ (xiv) $\lim_{x \to 12} f'(x)$ (xix) $\lim_{x \to 24} f'(x)$
 - (v) $\lim_{x \to 22} f(x)$ (x) $\lim_{x \to 4^+} f'(x)$ (xv) $\lim_{x \to 14} f'(x)$
- (b) Find any x-values in the open interval (0, 24) where f is not continuous.
- (c) Find any x-values in the open interval (0, 24) where f' is not continuous.

(d) For the time interval $0 \le t \le 24$, at what time t is f increasing at its greatest rate? Show the reasoning that supports your answer.

(e) Find the total number of calories burned over the time interval $6 \le t \le 18$ minutes.

(f) The setting on the machine is now changed so that the person burns f(t) + c calories per minute. For this setting, find c so that an average of 15 calories per minute is burned during the time interval $6 \le t \le 18$.