Math 323 Final Exam Practice Problems

- 1. Given the vectors $\vec{a} = \langle 1, 2, 3 \rangle$ and $\vec{b} = \langle -1, 1, 2 \rangle$, compute the following:
 - (a) $3\vec{a} 2\vec{b}$
 - (b) $\vec{a} \times \vec{b}$.
 - (c) A unit vector in the direction opposite \vec{a} .
 - (d) The component of \vec{a} along \vec{b} .
 - (e) The projection of \vec{b} along \vec{a} .
 - (f) The angle between \vec{a} and \vec{b}
 - (g) A vector which is perpendiclar to \vec{b}

2. Evaluate the following limit or show it doesn't exist: $\lim_{(x,y)\to(0,0)} \frac{\sin(2x^2+2y^2)}{x^2+y^2}$

- 3. A projectile is fired with initial speed $v_0 = 80$ feet per second from a height of 6 feet, and at an angle of $\frac{\pi}{4}$ above the horizontal. Assuming that the only force acting on the obeject is gravity, find its maximum altitude, horizontal range, and speed at impact.
- 4. Let $f(x,y) = \sqrt{x^2 + y^2}$. Find f_{xx} and f_{yx} .
- 5. (a) Find the equation of the tangent plane and normal line to the surface $z = \sqrt{x^2 + y^2}$ at the point (3,4,5).
 - (b) Use the plane that you found in (a) to estimate the value of z when x = 4 and y = 4. How good is the approximation?
 - (c) Find the direction and magnitude of the maximum rate of change of $z = f(x, y) = \sqrt{x^2 + y^2}$ at (3,4,5).
- 6. Let $T(x, y) = 3x^2y + xe^y$ denote the temperature of a metal plate at the point (x, y). A thermometer is placed at the point P = (1, 0). At what rate is the temperature changing as the thermometer is moved from P towards the point (2,-3)?
- 7. Use the Chain Rule to find:
 - (a) g'(t) where $g(t) = f(x(t), y(t)), f(x, y) = x^2y + y^2, x(t) = e^{4t}$, and $y(t) = \sin t$.
 - (b) g_u and g_v where $g(u, v) = f(x(u, v), y(u, v)), f(x, y) = 4x^2 y, x(u, v) = u^3v + \sin u$, and $y(u, v) = 4v^2$.
- 8. Use implicit differentiation to find $\frac{dz}{dx}$ if $x^2z y^2x + 3y z = -4$.
- 9. Let $f(x,y) = -\frac{1}{3}x^3 + xy 12y + \frac{1}{2}y^2$. Find and classify all critical points of f(x,y).
- 10. Find the maximum value of f(x, y, z) = x + 2y 4z on the sphere $x^2 + y^2 + z^2 = 21$.
- 11. Compute a Riemann sum to estimate the volume of the function $f(x, y) = 3x^2 + 4y$ on the region $0 \le x \le 4, 2 \le y \le 4$ partitioned into n = 4 equal sized rectangles, and evaluating each rectangle at its midpoint.
- 12. Reverse the order of integration in the following iterated integral: $\int_0^9 \int_0^{\sqrt{y}} f(x,y) \, dx \, dy.$

- 13. Find an iterated triple integral which gives the volume of the solid bounded by the graphs of $x = y^2 + z^2$ and x = 2z. DO NOT EVALUATE THE INTEGRAL.
- 14. Convert the following integral into an iterated integral in spherical coordinates.

DO NOT EVALUATE THE INTEGRAL: $\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} \int_0^{\sqrt{4-x^2-y^2}} z \, dz \, dy \, dx.$

15. Let $\vec{F}(x, y, z) = \langle 2xy, x^2 - 2z, 12z - 2y \rangle$.

- (a) Show that \vec{F} is conservative by finding a potential function for \vec{F} .
- (b) Evaluate $\int_{(0,0,0)}^{(1,1,2)} \vec{F} \cdot d\vec{r}$.
- 16. Set up an iterated integral for $\iint_S g(x, y, z) dS$ where $g(x, y, z) = x^2 z$ and S is the upper half of the ellipsoid $x^2 + 4y^2 + z^2 = 4$. DO NOT EVALUATE THE INTEGRAL.
- 17. Use Green's Theorem to evaluate $\oint_C (y^3 + \sin(x^2)) dx + (x^3 + \cos(y^2)) dy$, where C is the circle $x^2 + y^2 = 4$ traversed counterclockwise.
- 18. Let $\vec{F} = \langle y^2 + x, y + xz, x \rangle$ and S the sphere $x^2 + y^2 + z^2 = 1$. Use the Divergence Theorem to find $\iint_S \vec{F} \cdot \vec{n} \, dS$, where \vec{n} is the outward normal to S at (x, y, z).
- 19. Use Stokes' Theorem to evaluate $\iint_{S} (\nabla \times \vec{F}) \cdot \vec{n} \, dS$, where S is the portion of $z = \sqrt{4 x^2 y^2}$ above the xy-plane, with \vec{n} upward, and $\vec{F} = \langle zx^2, ze^{x+y} x, x\sin(y^2) \rangle$.

