
Math 323

LaGrange Multipliers

Example: Consider the line y = 5− 3x. What is the point on this line closest to the origin? There are several methods that
can be used to solve this problem.

The calculus I method would be to derive a function that gives the distance of a point on the line y = 5− 3x from the origin
as a function of x and then optimize this function.

A more elegant way to solve this is to notice that the circle of radius 1 centered at the origin does not intersect the line
y = 5 − 3x while the circle of radius 3 does.

In fact, there is some perfect radius 0 < r < 3 for which the circle of radius r centered at the origin is tangent to the line
y = 5 − 3x, and the closest point on the line to the origin is the point of tangency.

With this in mind, we consider f(x, y) = x2 + y2, and let g(x, y) = 3x + y − 5 = 0 (we just rearranged y = 5 − 3x). We are
looking for the level curve of f that is tangent to g(x, y) = 0.

That is, a level curve for which the tangent line to f is parallel to the line y = 5 − 3x, or a point where ∇f and ∇g are
parallel to one another, or a point where ∇f = λ∇g for some constant λ.

Now, ∇f = 〈2x, 2y〉 and ∇g = 〈3, 1〉, so 〈2x, 2y〉 = λ〈3, 1〉

Thus 2x = λ · 3 and 2y = λ · 1, or 2

3
x = λ = 2y, so 2x = 6y, or x = 3y.

Substituting this into g(x, y) = 3x + y − 5 = 0, we have 9y + y − 5 = 0, or 10y = 5, so y = 1

2
, and x = 3

2
.

Hence the point on the line y = 5 − 3x that is closest to the origin is (3

2
, 1

2
).

This example is an illustration of a much more general principle.

La Grange’s Theorem: Suppose f and g are functions of two variables with continuous first partial derivatives and suppose
that ∇g 6= ~0 throughout a region of the xy-plane. If f has an extremum f(x0, y0) subject to the constraint g(x, y) = 0, then
there is a real number λ such that ∇f(x0, y0) = λ∇g(x0, y0)

Proof Sketch: Since the graph of g(x, y) = 0 is a curve C in the plane and g has continuous first partials, then C has
parameterization

C :

{

x = h(t)
y = k(t) t ∈ I

where h(t) and k(t) are continuous functions on some interval I.

Let ~r(t) = 〈h(t), k(t)〉 be the associated vector-valued function. Let t0 be the value in I such that h(t0) = x0 and k(t0) = y0

and let F (h(t), k(t)) be the composite function. Since F (t0) in an extremum on a region with continuous partials, F ′(t0) = 0.

By the Chain Rule, F ′(t) = fx
dx
dt

+ fy
dy

dt
= fxh′(t) + fyk′(t).

Therefore, when t = t0, we have: 0 = F ′(t0) = fx(x0, y0)h
′(t0) + fy(x0, y0)k

′(t0) = ∇f(x0, y0) · ~r′(t0)

Hence ∇f(x0, y0) is orthogonal to the tangent vector ~r′(t0). Moreover, ∇g(x0, y0) is also orthogonal to ~r′(t0) since C is a
level curve of g.

Therefore ∇f(x0, y0) is parallel to ∇g(x0, y0). That is, ∇f(x0, y0) = λ∇g(x0, y0) for some real number λ.

We call λ a La Grange Multiplier.

Corollary: The points at which a function f of two variables has relative extrema subject to the constraint g(x, y) = 0 are
included among the points determined by the first two coordinates of the solutions (x, y, λ) to the system of equations:

C :







fx(x, y) = λgx(x, y)
fy(x, y) = λgy(x, y)
g(x, y) = 0

Corollary: [3 variable version] The points at which a function f of three variables has relative extrema subject to the
constraint g(x, y, z) = 0 are included among the points determined by the first three coordinates of the solutions (x, y, z, λ)
to the system of equations:

C :















fx(x, y, z) = λgx(x, y, z)
fy(x, y, z) = λgy(x, y, z)
fz(x, y, z) = λgz(x, y, z)
g(x, y, z) = 0



Examples:

1. Suppose that we want to cut a rectangular bean from a circular log of radius 1 foot. What dimensions will maximize
the cross-sectional area of the beam?

We set up a coordinate system for a cross section of the log by looking at the unit circle centered at the origin. We can
specify the dimensions of a beam cut from this log by selecting a point in the first quadrant. The x-coordinate gives half
the width of the beam, and the y-coordinate gives half the height of the beam. Then A = f(x, y) = (2x)(2y) = 4xy,
subject to the constraint g(x, y) = x2 − y2 − 1 = 0 (we assume the the maximum cross-sectional area occurs when we
cut the log so that the “corners” of the beam lie along the circumference of the log’s cross-section).

First notice that the partial derivatives of f and g are: fx = 4y, fy = 4x, gx = 2x, and gy = 2y.

Therefore, by La Grange’s Theorem, we are looking for points on the circle satisfying 4y = λ(2x) and 4x = λ(2y)

That is, λ =
4y

2x
=

4x

2y
, so 8y2 = 8x2 or x2 = y2.

Substituting this into the constraint equation gives x2 + x2 = 2x2 = 1, so x2 = 1

2
and x = ±

√
2

2
and y = ±

√
2

2

Recall that we can assume the the point determining the dimensions of the beam is in the first quadrant, so the point

is P (
√

2

2
,
√

2

2
) and hence the dimensions of the beam are (

√
2,
√

2).

2. Suppose that a rectangular box with no lid is to be constructed from 12m2 of cardboard. Find the maximum volume
of such a box.

We set up a coordinate system for the box by letting at the x-coordinate give the width of the box, the y-coordinate
give the length of the box, and the z coordinate give the height of the box. Then V = f(x, y, z) = xyz, subject to the
constraint that the total surface area of the box satisfies: g(x, y, z) = 2xz + 2yz + xy − 12 = 0.

First notice that the partial derivatives of f and g are: fx = yz, fy = xz, fz = xy, gx = 2z + y, gy = 2z + x, and
gz = 2x + 2y.

Therefore, by La Grange’s Theorem, we are looking for points satisfying yz = λ(2z + y), xz = λ(2z + x), and
xy = λ(2x + 2y)

That is, (multiplying by each “missing” variable: xyz = λ(2xz + xy), xyz = λ(2yz + xy), and xyz = λ(2xz + 2yz)

Equating the first two gives: λ(2xz + xy) = λ(2yz + xy), or 2xz + xy = 2yz + xy.

Thus 2xz = 2yz, so either x = y or z = 0.

Equating the last two gives: λ(2yz + xy) = λ(2xz + 2yz), or 2yz + xy = 2xz + 2yz.

Thus xy = 2xz, so either x = 0 or y = 2z.

Since we clearly do not want a box with no width or no height, the box of maximal volume must satisfy x = y = 2z.

Substituting this into the constraint equation gives 2(2z)z + 2(2z)z + (2z)(2z) − 12 = 0 or 4z2 + 4z2 + 4z2 = 12, so
12z2 = 12 and hence z = ±1.

We reject the negative solution and conclude that x = y = 2 and z = 1 gives the width, length, and height of the box
with maximal volume.

Two Constraint Optimization: Let f(x, y, z) be a function subject to two constraints g(x, y, z) = 0 and h(x, y, z) = 0.
If an extremum of f subject to these constraints occurs at a point P (x0, y0, z0) where ∇g(x0, y0, z0) and ∇h(x0, y0, z0) are
non-zero and non-parallel, then ∇f(x0, y0, z0) = λ∇g(x0, y0, z0) + µ∇h(x0, y0, z0)

Example: The plane x + y + z = 12 intersects the paraboloid z = x2 + y2 in an ellipse. Find the lowest and highest points
on this ellipse.

Notice that the two constraint system that can be used to find the highest and lowest points in this intersection is:
f(x, y, z) = z, g(x, y, z) = x + y + z − 12 = 0, and h(x, y, z) = x2 − y2 − z = 0.


