
Math 487
Exam 2 - Practice Problems

1. Short Answer/Essay Questions:

(a) Explain the difference between an axiomatic system and a model.

Recall: An axiomatic system consists of undefined terms, defined terms, axioms, and theorems. Theorems are
proved using only the axioms, a logical system, and previous theorems.

A model of an axiomatic system is obtained by assigning meaning to the undefined terms of the axiomatic system
in such a way that the axioms are true statements about the assigned concepts. Models can be either abstract or
concrete.

With this in mind, an axiomatic system is best thought of as the logical theory produced by a given set of axioms
and undefined terms. A model is a setting (either abstract or concrete) where a given logical theory holds true.

(b) Which geometric model best describes the universe we live in?

This is an open-ended question. Answers to this question vary, and at this time, no definitive answer is known.
If we are talking about the geometry of the earth, an argument could be made for the Riemann Sphere, but for
smaller land areas, we often use the Euclidean Plane. What model should be used to interstellar and intergalactic
travel?

(c) Give an example of an SMSG axiom that is not independent of the other axioms.

The Ruler Placement Postulate is an example of an axiom that is not independent of the other axioms. See
Theorem 2.5 in your textbook.

(d) Give an example of an SMSG axiom that is independent of the other axioms. Provide justification for your answer.

There are many choices here. One possibility is the SAS postulate. This axiom holds in the Euclidean Plane
Model and in the Poincare Half Plane Model, but it does not hold in the Taxicab Plane Model (see HW 2.49a).

(e) How do we know that the Euclidean Parallel Postulate is Independent of the other axioms?

Since the Euclidean Parallel Postulate holds in the Euclidean Plane Model but does not hold in the Poincare
Half-Plane Model, the Euclidean Parallel Postulate must be independent of the other axioms.

(f) Give the definition of an equivalence relation.

Definition: An equivalence relation ∼ on a set S that satisfies each of the following.

• a ∼ a for all a ∈ S (reflexive property)

• For all a, b ∈ S, if a ∼ b then b ∼ a (symmetric property)

• For all a, b, c ∈ S, if a ∼ b and b ∼ c then a ∼ c (transitive property)

(g) Give the definition of an angle bisector.

Definition: The bisector of an angle ∠ABC is a ray
−−→
BD where D is in the interior of ∠ABC, and ∠ABD ∼=

∠DBC.

2. For each of the following, provide an example of a model where the statement is true and an example of a model where
the statement is false.

(a) There is a unique line between any pair of points.

This statement is true in the Euclidean Plane, the Taxicab Plane, the Max-Distance Plane, the Missing Strip
Plane, the Modified Riemann Sphere, and the Poincare Half-Plane model.

This statement is false in the Riemann Sphere and in some Discrete Geometries.



(b) The ruler postulate holds.

This statement is true in the Euclidean Plane, the Taxicab Plane, the Max-Distance Plane, the Missing Strip
Plane, and the Poincare Half-Plane model.

This statement is false in the Riemann Sphere, the Modified Riemann Sphere, and in Discrete Geometries.

(c) The SAS postulate holds.

This statement is true in the Euclidean Plane and Poincare Half-Plane models.

This statement is false in the Taxicab Plane and in the Max-Distance Plane models (any others?)

(d) the AAA congruence theorem is true.

This statement is true in the Poincare Half-Plane model.

This statement is false in the the Euclidean Plane model.

(e) The Plane Separation Postulate holds.

This statement is true in the Euclidean Plane, the Taxicab Plane, the Max-Distance Plane, and the Poincare
Half-Plane model.

This statement is false in the Missing Strip Plane.

(f) Rectangles exist.

This statement is true in the the Euclidean Plane model.

This statement is false in the Poincare Half-Plane model and in the Riemann Sphere model.

(g) Lines have infinite length.

This statement is true in the Euclidean Plane, the Taxicab Plane, the Max-Distance Plane, the Missing Strip
Plane, and the Poincare Half-Plane model.

This statement is false in the Riemann Sphere, the Modified Riemann Sphere, and in Discrete Geometries.

(h) the sum of the measures of the angles in any triangle is 180

This statement is true in the the Euclidean Plane model.

This statement is false in the Poincare Half-Plane model and in the Riemann Sphere model.

3. For each statement, determine whether the statement is true or false. Then briefly justify your answer. Assume each
statement is being made about a neutral geometry (i.e. every postulates except the Euclidean parallel postulate holds).

(a) Parallel lines exist.

True.

By Postulate 5a, there are at least 3 non-collinear points. By Postulate 1, given any two points, there is exactly
one line that contains them. Therefore, a lines exist. Hence there is a line ℓ, and there is a point not on that

line. Let A and B be points on ℓ. By the Postulate 12, there is a ray
−→
AP in one half plane of

←→
AB such that

m (∠BAP ) = 90. Similarly, if we consider the line
←→
AP , again by Postulate 12, there is a ray

−−→
PD with D in the

same half plane as B such that m (∠APD) = 90. Thus both
←→
AB and

←→
PD are perpendicular with

←→
AP . Hence, by

Theorem 2.13,
←→
AB and

←→
PD are parallel.



(b) If a line ℓ is perpendicular with distinct lines
←→
AB and

←→
CD, then the lines

←→
AB and

←→
CD are parallel.

True.

This is just a restatement of Theorem 2.13, which you proved as part of HW Assignment #5.

(c) Given and 3 distinct collinear points, exactly one is between the other two.

True.

Let A, B, and C be 3 distinct collinear points. Let ℓ be the line containing these three points. Using the Ruler
Postulate, let f be a ruler for ℓ, and let f(A) = a, f(B) = b, and f(C) = c. WLOG, assume a < b < c (since
the three points are distinct, these coordinates must be distinct). Then d(A,B) = b − a, d(B,C) = c − b, and
d(A,C) = c− a. Also, d(A,B) + d(B,C) = (b− a) + (c− b) = c− a = d(A,C). Hence A−B − C.

(d) If m (∠BAC) = m (∠BAD) +m (∠DAC), then D ∈ int (∠BAC).

Suppose m (∠BAC) = m (∠BAD) +m (∠DAC), but D /∈ int (∠BAC).

Case 1: Suppose D is on the same side of
←→
AB as C. Then B and D must be on opposite sides of

←→
AC, and by

the contrapositive of Theorem 2.7, m (∠BAD) ≥ m (∠BAC). This is a contradiction of our assumption that
m (∠BAC) = m (∠BAD) +m (∠DAC) and the fact that all angle measures are positive.

Case 2: Suppose D is on the opposite side of
←→
AB as C. By the Plane Separation Postulate, CD must intersect

←→
AB at a point E. Since ∠DAC is an angle, A 6= E. Then either B ∈ int∠DAC or E ∈

∫
∠DAC. In the first

case, we have m (∠BAC) < m (∠BAD). In the second, we have m (∠BAD) +m (∠DAC) > 180.

Therefore, we must have D ∈ int (∠BAC).

4. Determine whether or not the Missing Strip Plane satisfies the Euclidean Parallel Postulate.

Claim: The Missing Strip Plane satisfies the Euclidean Parallel Postulate. To see this consider the following. Let ℓ be
the line given by {(x, y) | y = 2, x < 0 or x ≥ 1}. Let P be the point (−1, 3). Then the lines ℓ1 = {(x, y) | y = 3, x < 0
or x ≥ 1} and ℓ2 = {(x, y) | y = −x+ 2, x < 0 or x ≥ 1} both contain P and are both parallel with the line ℓ.

5. Prove that a line segment has a unique midpoint.

Let AB be a line segment, and suppose d(A,B) = r. Applying the ruler placement postulate to the line
←→
AB, there is a

ruler f such that f(A) = 0 and f(B) > 0. Then f(B) = r. Let C be the unique point satisfying f(C) = r

2
(note that

there is such a point since f is onto, and there is only one such point since f is 1-1).

By property iii of Postulate 3, d(A,C) = r

2
− 0 = r

2
and d(C,B) = r − r

2
= r

2
. Then d(A,C) + d(C,B) = r

2
+ r

2
= r =

d(A,B), so A− C −B, and C is a midpoint of the segment AB.

To see that C is unique, suppose that M is a midpoint of AB. Then M is on
←→
AB and AM = MB, so AM −MB = 0.

Suppose M − A− B. Then MB = MA+ AB = MA+ r, so MB −MA = r > 0, which is a contradiction. Similarly,
if A−B −M , then AM = AB +BM = r +BM , so AM −BM = r > 0 which is a contradiction. Clearly, we cannot
have M = A or M = B, since then either AM = 0 and MB = r, or BM = 0 and AM = r, which both lead to
contradictions.

Therefore, we must have A −M − B. Thus AM = MB and AM +MB = r. Hence AM = MB = r

2
, so, using the

same ruler as above, M has coordinate r

2
. Thus, since f is 1-1, M = C and hence C is unique.

6. Prove that triangle congruence is an equivalence relation.

Recall that two triangles are congruent provided all three or their corresponding sides are congruent and all three of
their corresponding angles are congruent.

In HW #2.27, we proved that segment congruence is an equivalence relation. A similar proof shows that angle
congruence is an equivalence relation:

• Let ∠A be an angle. If m (∠A) = r, then m (∠A) = m (∠A), so ∠A ∼= ∠A. Hence angle congruence is reflexive.



• Let ∠A and ∠B be angles. If m (∠A) ∼= ∠B, then m (∠A) = m (∠B). But then m (∠B) = m (∠A), so ∠B ∼= ∠A.
Hence angle congruence is symmetric.

• Let ∠A, ∠B and ∠C be angles. If m (∠A) ∼= ∠B and m (∠B) ∼= ∠C, then m (∠A) = m (∠B) and m (∠B) =
m (∠C). But then m (∠A) = m (∠C), so ∠A ∼= ∠C. Hence angle congruence is transitive.

Therefore, since both segment congruence and angle congruence are equivalence relations, so is triangle congruence.

7. Prove that the Missing Strip Place does not satisfy Pasch’s Postulate.

Recall: Pasch’s Postulate

Given any line ℓ and any triangle △ABC, and any point D on ℓ such that A − D − B, either ℓ intersects AC or ℓ
intersects BC

The following gives a counterexample to Pasch’s Postulate in the Missing Strip Plane. Let A = (−4, 0), B = (2, 0),
C = (−4, 6), D = (−2, 0), and ℓ the line given by intersecting the Euclidean line y = x + 2 with the Missing Strip
Plane. Then ℓ does not intersects neither AC nor BC

The details are left to the reader.

8. State and prove the AAS congruence theorem.

Theorem: (AAS) Let △ABC and △DEF be triangles satisfying ∠A ∼= ∠D, ∠C ∼= ∠F , and AB ∼= DE. Then
△ABC ∼= △DEF

Proof: We will proceed using proof by contradiction. Suppose AC 6= DF . WLOG, assume that AC > DF . Let G be

the point on
←→
DF such that D −G− F and DG = AC.

Consider the triangles △ABC and △DGE.

A

B

C D

E

FG

Since AB ∼= DE, AC ∼= DG, and ∠A ∼= ∠D, by the SAS postulate, △ACB ∼= △DGE. Then ∠ACB ∼= ∠DGE. Also
notice ∠DGE is external to triangle △EGF and ∠GFE = ∠DFE is a remote interior angle. But ∠ACB ∼= ∠DFE,
so ∠DGE ∼= ∠DFE. This contradicts the conclusion of the External Angle Theorem, which requires m (∠DGE) >
m (∠DFE).

Thus we must have AC ∼= DF , hence, using the SAS Postulate, △ACB ∼= △DFE.

9. Prove that there are at least two lines that are parallel to each other.

Whoops, this is the same as 3(a) above. I forgot to delete this question in the handout.

10. Prove that the diagonals (sorry, this was a typo – I proved the other one in class!) of a Saccheri quadrilateral are
congruent.

Recall: A Saccheri Quadrilateral is a quadrilateral 2ABCD where ∠BAD and ∠ABC are right angles and AD ∼= BC.
Here, AB is called the base and CD is called the summit.



A B

CD

Since AB ∼= AB, we may apply the SAS Postulate to conclude that △DAB ∼= △CBA. Therefore, the see that
corresponding diagonal sides satisfy AC ∼= DB.

11. Use the previous results along with the Theorem 2.18 and Euclid’s 5th Postulate to prove that rectangles exist in a
Euclidean geometry.

Recall that from Postulate 5a and Postulate 1, there is a line
←→
AB and at least one point not on this line. Using the

Distance Postulate, let r = d(A,B). Let H be one of the half planes bordering the line
←→
AB. Applying the Angle

Construction Postulate, there is exactly one ray
−−→
BP in H with m (∠ABP ) = 90. Similarly, there is exactly one ray

−→
AQ in H with m (∠BAQ) = 90. Applying the Ruler Postulate, let S be the point on

−→
AQ with d(A,S) = r. Similarly,

let T be the point on
−−→
BP with d(B, T ) = r. Then 2ABTS is a Saccheri Quadrilateral. By Theorem 2.17,

←→
AB and

←→
ST are both perpendicular to the segment joining their midpoints. Then, by Theorem 2.13,

←→
AB and

←→
ST are parallel.

Similarly, since
←→
AS and

←→
BT are both perpendicular to the segment AB, then, again by Theorem 2.13,

←→
AS and

←→
BT are

parallel. Thus 2ABTS is a parallelogram [In fact, it is s rhombus. We could have used Theorem 2.20, but I wanted
to show you all the details of the proof of Theorem 2.20]. Finally, (and this is the part that is not true in general for

a neutral geometry) Suppose that ∠AST is not a right angle. Then, by Euclid’s 5th Postulate, the lines
←→
AB and

←→
ST

intersect. This is a contradiction. Hence ∠AST must be a right angle. Similarly, ∠BTS must also be a right angle.
Thus 2ABTS is a rectangle (in fact it is a square).

12. Prove each of the following Euclidean Propositions:

(a) If A and D are points on the same side of a line
←→
BC and the line

←→
BA is parallel to the line

←→
CD then m (∠ABC)+

m (∠BCD) = 180

To obtain a contradiction, suppose that
←→
CD then m (∠ABC) +m (∠BCD) 6= 180.

Case 1: Suppose m (∠ABC) +m (∠BCD) < 180.

Then, applying Euclid’s 5th Postulate, the lines
←→
BA and

←→
CD meet at a point P on the same side of

←→
BC as A and

D. But
←→
BA and

←→
CD are parallel, so this is a contradiction.

Case 2: Suppose m (∠ABC) +m (∠BCD) > 180.

Let E be a point on
←→
AB such that A−B−E. Similarly, let F be a point on

←→
CD such that D−C −F . Using the

supplement postulate and the fact that ∠ABC and ∠CBE form a linear pair and that ∠DCB and ∠BCF also
form a linear pair:

m (∠ABC)+m (∠CBE) = 180, m (∠DCB)+m (∠BCF ) = 180, and by assumption, m (∠ABC)+m (∠BCD) >
180.

Hence m (∠CBE) +m (∠BCF ) < 180.

Again applying Euclid’s 5th Postulate, the lines
←→
BA and

←→
CD meet at a point P on the same side of

←→
BC as E and

F . But
←→
BA and

−−→
CD are parallel, so this is again a contradiction.

Thus m (∠ABC) +m (∠BCD) = 180. 2.

(b) Every distinct pair of parallel lines have a common perpendicular.

Suppose
←→
AB is parallel to the line

←→
CD (and suppose these lines are distinct). Let E be a point in the opposite

half plane of
←→
AB as the point C (since

←→
AB is parallel to the line

←→
CD, C is not on the line

←→
AB). By Theorem



2.12, there is a unique perpendicular to
←→
CD through the point E. Let F be the point of intersection between this

perpendicular and the line
←→
CD. Since E and C are in opposite half planes, by the Plane Separation Axiom, EF

intersects
←→
AB at some point G.

WLOG, assume A−G−B and C − F −D. Notice that we also have E −G− F and m (∠GFD) = 90.

Applying 12(a) above to the lines
←→
AB,

←→
CD, and

←→
EF , we have that m (∠GFD) + m (∠BGF ) = 180. Hence

m (∠BGF ) = 90, and the line
←→
EF is perpendicular to both

←→
AB and

←→
CD.

(c) If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.

Suppose that we are given lines
←→
AB,

←→
DE, and

←→
BE such that A−B − C, D −E − F , and G−B −E −H where

A and D are on the same side of the line
←→
BE. Further suppose that

←→
AB and

←→
DE are parallel.

Applying 12(a) above to the lines
←→
AB,

←→
DE, and

←→
BE, we have that m (∠CBE) +m (∠BEF ) = 180.

However, since ∠ABE and ∠CBE form a linear pair, by the Supplement Postulate, m (∠ABE) +m (∠CBE) =
180. Therefore, m (∠ABE) = m (∠BEF ).

Similarly, since ∠DEB and ∠BEF form a linear pair, by the Supplement Postulate, m (∠DEB) +m (∠BEF ) =
180. Therefore, m (∠CBE) = m (∠DEB).

This both pairs of alternate interior angles are congruent.

(d) The sum of the measures of any triangle is 180.

Consider a triangle △ABC. Let
←→
CE be the unique line through C parallel to the line

←→
AB. Let F be a point such

that F −C −E and G and H be points such that G−A−B −H. Then, applying 12(c) to the parallel lines
←→
AB

and
←→
CE and the transversal

←→
AC, m (∠ACF ) = m (∠CAB).

Similarly, applying 12(c) to the parallel lines
←→
AB and

←→
CE and the transversal

←→
CB, m (∠ECB) = m (∠CBA).

Notice that ∠FCA and ∠ECA form a linear pair, so by the Supplement Postulate, m (∠FCA)+m (∠ECA) = 180.

Notice that since A and B are on the same side of
←→
CE and we have A − B − H, then B ∈ int (∠FCA). Thus

m (∠FCA) = m (∠ACB) +m (∠FCB).

Therefore, m (∠ECA) +m (∠ACB) +m (∠FCB) = 180.

But then m (∠CAB) +m (∠ACB) +m (∠CBA) = 180.

Hence the sum of the angles of △ABC is 180.

13. Provide the justification for each step in the following 2-column proof (you may assume all SMSG axioms except the
Parallel Postulate).

Theorem (Exterior Angle Theorem): Any exterior angle of a triangle △ABC is greater than either of its remote
interior angles.

Proof: Given △ABC, let D be a point such that A− C −D (i.e. ∠BCD is an exterior angle of △ABC).



1. Let M be the midpoint of segment BC. Review Exercise 6 (HW 2.24).

2. Then B −M − C and BM ∼= MC. Definition of the midpoint of a segment and
the definition of betweenness.

3. There is a point E on ray
−−→
AM The Ruler Postulate, Rev. Exercise 6 (HW 2.24).

such that A−M − E and ME = MA.

4. ME ∼= MA Definition of segment congruence.

5. ∠AMB and ∠EMC are vertical angles. Definition of Vertical Angles.

6. ∠AMB ∼= ∠EMC Theorem 2.8

7. △AMB ∼= △EMC SAS Postulate.

8. ∠ABC = ∠ABM ∼= ∠ECM = ∠ECB Definition of triangle congruence, renaming.

9. m (∠ABC) = m (∠ECB) Definition of angle congruence.

10. E and D are on the same side of line
←→
BC A−M − E, A− C −D, and the Plane Separation Axiom.

11. B, M and E are on the same side of line
←→
CD A−M − E, C −M −B, and the Plane Separation Axiom.

12. E ∈ int (∠BCD) Definition of the interior of an angle.

13. m (∠BCE) +m (∠ECD) = m (∠BCD) Angle Addition Postulate.

14. m (∠BCD) > m (∠BCE) = m (∠ABC) Angle Measurement Postulate, Subtraction, Properties if equality.

The proof of the case for the other remote interior angle is similar 2.

14. Proof of Theorem 2.15: If there is a transversal to two distinct lines with alternate interior angles congruent, then the
two lines are parallel.

Proof: Assume that
←→
AB,

←→
DE, and

←→
BE are distinct with A−B−C, D−E −F , and G−B−E −H. Further assume

that A and D are on the same side of the line
←→
BE. We will proceed with proof by contraposition. Assume that

←→
AB

and
←→
DE are not parallel.

1. There is a point P on both
←→
AB and

←→
DE negation of the definition of parallel.

2. WLOG, assume P is on the same side of
←→
BE as A we may relabel if necessary.

3. Consider △PBE Step 1, definition of triangle.

4. ∠BEF and ∠CBE are exterior angles of △PBE Definition of an exterior angle.

5. m (∠PBE) < m (∠BEF ) and m (∠PEB) < m (∠CBE) The External Angle Theorem

6. m (∠ABE) < m (∠BEF ) and m (∠DEB) < m (∠CBE) renaming angles.

7. ∠ABE 6∼= ∠BEF and ∠DEB 6∼= ∠CBE Definition or angle congruence.

We have shown that if two lines are not parallel, then neither pair of alternate interior angles formed by any transversal
are congruent. This completes the proof by contraposition.


