Math 323 Final Exam Practice Problem Solutions

1. Given the vectors $\vec{a} = \langle 1, 2, 3 \rangle$ and $\vec{b} = \langle -1, 1, 2 \rangle$, compute the following:

- (a) $3\vec{a} 2\vec{b}$ Solution: $3\vec{a} - 2\vec{b} = \langle 3, 6, 9 \rangle + \langle 2, -2, -4 \rangle = \langle 5, 4, 5 \rangle.$ (b) $\vec{a} \times \vec{b}$. Solution: $\vec{a} \times \vec{b} =$ \vec{i} \vec{j} \vec{k} 1 2 3 −1 1 2 $= \vec{i}(4-3) - \vec{j}(2+3) + \vec{k}(1+2) = \langle 1, -5, 3 \rangle.$
- (c) A unit vector in the direction opposite \vec{a} . Solution:

$$
\vec{u} = \frac{\vec{a}}{\|\vec{a}\|} = \frac{\langle -1, -2, -3 \rangle}{\sqrt{1+4+9}} = \langle \frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}} \rangle.
$$

- (d) The component of \vec{a} along \vec{b} . Solution: $comp_{\vec{b}}\vec{a} = \frac{\vec{a}\cdot\vec{b}}{\|\vec{b}\|}$ $\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} = \frac{\langle 1,2,3 \rangle \cdot \langle -1,1,2 \rangle}{\sqrt{1+1+4}} = \frac{(-1+2+6)}{\sqrt{6}} = \frac{7}{\sqrt{6}}$ $\overline{6}$.
- (e) The projection of \vec{b} along \vec{a} .
	- Solution: $proj_{\vec{a}}\vec{b} = \frac{\vec{b}\cdot\vec{a}}{\|\vec{a}\|^2}\vec{a} = \frac{7}{\sqrt{14}^2}\langle 1,2,3\rangle = \langle \frac{1}{2},1,\frac{3}{2}\rangle.$
- (f) The angle between \vec{a} and \vec{b}

Solution:
\n
$$
\cos \theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} = \frac{7}{\sqrt{14}\sqrt{6}} = \frac{7}{2\sqrt{21}}, \text{ so } \theta = \cos^{-1}(\frac{7}{2\sqrt{21}}) \approx 40.6^{\circ}.
$$

(g) A vector which is perpendiclar to \vec{b}

Solution:

There are many possible answers here.

One possibility is $\vec{v} = \langle 1, 1, 0 \rangle$, since then $\vec{b} \cdot \vec{b} = \langle 1, 1, 0 \rangle \cdot \langle -1, 1, 2 \rangle = -1 + 1 + 0 = 0$.

2. Evaluate the following limit or show it doesn't exist: lim $(x,y) \rightarrow (0,0)$ $\sin(2x^2 + 2y^2)$ $x^2 + y^2$

Solution:

Assume that $(x, y) \rightarrow (0, 0)$ along some curve given by $x = f(y)$.

Then
$$
\lim_{(x,y)\to(0,0)} \frac{\sin(2x^2 + 2y^2)}{x^2 + y^2} = \lim_{(f(y),y)\to(0,0)} \frac{\sin(2(f(y))^2 + 2y^2)}{(f(y))^2 + y^2}.
$$
 Using L'Hopital's Rule:

$$
\lim_{(x,y)\to(0,0)} \frac{\sin(2x^2 + 2y^2)}{x^2 + y^2} = \lim_{y\to 0} \frac{(4f(y)f'(y) + 4y)\cos(2(f(y))^2 + 2y^2)}{2f(y)f'(y) + 2y} = \lim_{y\to 0} 2\cos(2(f(y))^2 + 2y^2) = 2\cos(0) = 2.
$$

If $(x, y) \to (0, 0)$ along some curve given by $y = g(x)$, a similar computation shows that the limit is 2 in this case as well. Therefore the limit along any path is 2, so the limit exists and is equal to 2.

3. A projectile is fired with initial speed $v_0 = 80$ feet per second from a height of 6 feet, and at an angle of $\frac{\pi}{4}$ above the horizontal. Assuming that the only force acting on the obeject is gravity, find its maximum altitude, horizontal range, and speed at impact.

Solution:

We are given that $v_0 = 80 \frac{ft}{sed}$, $h = 6 ft$., $\theta = \frac{\pi}{4}$, and $g = -32 \frac{ft}{sec^2}$. Then $\vec{a}(t) = \langle 0, -32 \rangle$, $\vec{v}(t) = \langle v_0 \cos \theta, v_0 \sin \theta - 32t \rangle =$ $\langle 40\sqrt{2}, 40\sqrt{2} - 32t \rangle$, and $\vec{r}(t) = \langle (v_0 \cos \theta)t, (v_0 \sin \theta)t - 16t^2 + h \rangle = \langle 40\sqrt{2}t, 40\sqrt{2}t - 16t^2 + 6 \rangle$.

The maximum altitude occurs when $40\sqrt{2} - 32t = 0$, or when $t = \frac{40\sqrt{2}}{32}$. Plugging this tim into the vertical coordinate function of $\vec{r}(t)$ gives the maximum altitude: $40\sqrt{2}(\frac{40\sqrt{2}}{32}) - 16(\frac{40\sqrt{2}}{32})^2 + 6 = 56$ feet.

The horizontal range is giving by finding the impact time, when $40\sqrt{2}t - 16t^2 + 6 = 0$. The positive solution of this quadratic function is $t \approx 3.6386$, so the horizontal range is $40\sqrt{2}(3.6386) \approx 205.83$ feet.

The speed at impact is the magnitude of the velocity function $\vec{v}(t)$ at time $t \approx 3.6386$. $\|\vec{v}(3.6386)\| = \|\langle 40sqrt2, 40\sqrt2 - \vec{v}(3.6386)\rangle\|$ $32(3.6386)\rangle$ || = $82.365 \frac{ft}{sec}$.

4. Let $f(x,y) = \sqrt{x^2 + y^2}$. Find f_{xx} and f_{yx} . Solution:

$$
f_x = \frac{1}{2}(x^2 + y^2)^{\frac{1}{2}}(2x) = \frac{x}{\sqrt{x^2 + y^2}}
$$

\n
$$
f_y = \frac{1}{2}(x^2 + y^2)^{\frac{1}{2}}(2y) = \frac{y}{\sqrt{x^2 + y^2}}
$$

\n
$$
f_{xx} = (x^2 + y^2)^{\frac{-1}{2}} + (x)(\frac{-1}{2})(x^2 + y^2)^{\frac{-3}{2}}(2x)
$$

\n
$$
f_{yx} = (y)(\frac{-1}{2})(x^2 + y^2)^{\frac{-3}{2}}(2x)
$$

5. (a) Find the equation of the tangent plane and normal line to the surface $z = \sqrt{x^2 + y^2}$ at the point (3,4,5). Solution:

Notice that since $z = f(x, y) = \sqrt{x^2 + y^2}$, $f_x = \frac{1}{2}(x^2 + y^2)^{\frac{1}{2}}(2x) = \frac{x}{\sqrt{x^2 + y^2}}$, and $f_y = \frac{1}{2}(x^2 + y^2)^{\frac{1}{2}}(2y) = \frac{y}{\sqrt{x^2 + y^2}}$. Then the tangent plane to $z = f(x, y)$ at the point $(3, 4, 5)$ is given by $z = f(3, 4) + f_x(3, 4)(x-3) + f_y(3, 4)(y-4) =$ $5+\frac{3}{5}(x-3)+\frac{4}{5}(y-4)$. The normal line to this plane can be found by parameterising the line through $(3, 4, 5)$ in the direction of the normal vector to the tangent plane, which is given by $\vec{n} = \langle f_x(3, 4), f_y(3, 4), -1 \rangle = \langle \frac{3}{5}, \frac{4}{5}, -1 \rangle$.

Thus the normal line is given by ℓ : $\sqrt{ }$ ^J \mathcal{L} $x(t) = 3 + \frac{3}{5}t$ $y(t) = 4 + \frac{4}{5}t$ $z(t) = 5 - t$

(b) Use the plane you found in (a) to estimate the value of z when $x = 4$ and $y = 4$. How good is the approximation? Solution:

Approximating using the tangent plane formula derived in part (a) above, we get $f(4, 4) \approx 5 + \frac{3}{5}(4-3) + \frac{4}{5}(4-4) =$ $5 + \frac{3}{5} = 5.6$

The actual function value is: $f(4, 4) = \sqrt{4^4 + 4^2} = \sqrt{32} \approx 5.65685$. The approximation appears to be good to within about 1 decimal place.

(c) Find the direction and magnitude of the maximum rate of change of $z = f(x, y) = \sqrt{x^2 + y^2}$ at (3,4,5). Solution:

The maximum rate of change in in the direction of the gradient at $(3, 4, 5)$, namely, $\langle \frac{3}{5}, \frac{4}{5} \rangle$. The maxnitude of the maximum rate of change is $\|\langle \frac{3}{5}, \frac{4}{5} \rangle \| = \sqrt{(\frac{3}{5})^2 + (\frac{4}{5})^2} = \sqrt{\frac{9}{25} + \frac{16}{25}} = \sqrt{\frac{25}{25}} = 1.$

6. Let $T(x,y) = 3x^2y + xe^y$ denote the temperature of a metal plate at the point (x, y) . A thermometer is placed at the point $P = (1, 0)$. At what rate is the temperature changing as the thermometer is moved from P towards the point $(2,-3)?$

Solution:

The vector that gives the direction of movement from P to Q is $\vec{v} = \langle 2 - 1, -3 - 0 \rangle = \langle 1, -3 \rangle$. A unit vecot in this direction is: $\vec{u} = \langle \frac{1}{\sqrt{10}}, \frac{-3}{\sqrt{10}} \rangle$. $\nabla T = \langle 6xy + e^y, 3x^2 + xe^y \rangle$, so $\nabla T(1,0) = \langle 0 + e^0, 3(1)^2 + 1e^0 \rangle = \langle 1, 4 \rangle$. Therefore, $D_{\vec{u}}f(1,0) = \nabla T(1,0) \cdot \vec{u} = \langle 1, 4 \rangle \cdot \langle \frac{1}{\sqrt{10}}, \frac{-3}{\sqrt{10}} \rangle = \frac{1}{\sqrt{10}} - \frac{12}{\sqrt{10}} = \frac{-11}{\sqrt{10}}.$

- 7. Use the Chain Rule to find:
	- (a) $g'(t)$ where $g(t) = f(x(t), y(t)), f(x, y) = x^2y + y^2, x(t) = e^{4t}, \text{ and } y(t) = \sin t.$ Solution:

By the Chain Rule, $g'(t) = f_x(x(t), y(t))(x'(t)) + f_y(x(t), y(t))(y'(t)) = (2xy)(4e^{4t}) + (x^2+2y)(\cos t) = (2(e^{4t})(\sin t))(4e^{4t})$ $((e^{4t})^2 + 2\sin t)(\cos t) = 8e^{8t}\sin t + e^{8t}\cos t + 2\sin t\cos t.$

(b) g_u and g_v where $g(u, v) = f(x(u, v), y(u, v)), f(x, y) = 4x^2 - y, x(u, v) = u^3v + \sin u$, and $y(u, v) = 4v^2$. Solution:

By the Chain Rule, $g_u = (f_x)(x_u) + (f_y)(y_u) = (8x)(3u^2v + \cos u) + (-1)(0) = 8(u^3v + \sin u)(3u^2v + \cos u)$ and $g_v = (f_x)(x_v) + (f_y)(y_v) = (8x)(u^3) + (-1)(8v) = 8(u^3v + \sin u)(u^3) - 8v.$

8. Use implicit differentiation to find $\frac{dz}{dx}$ if $x^2z - y^2x + 3y - z = -4$.

Solution:

Recall that $\frac{dz}{dx} = \frac{-F_x}{F_z}$. Here, $F_x = 2xz - y^2$, and $F_z = x^2 - 1$. Therefore, $\frac{dy}{dz} = \frac{y^2 - 2xz}{x^2 - 1}$.

9. Let $f(x,y) = -\frac{1}{3}x^3 + xy - 12y + \frac{1}{2}y^2$. Find and classify all critical points of $f(x, y)$.

Solution:

To find and classify critical points of a functon of two variables, we first find all points where either both partials are zero, or where one of the partials is undefined. Notice that $f_x = -x^2 + y$ and $f_y = x - 12 + y$, which are defined everywhere, so critical points occur when $-x^2 + y = 0$, that is, when $y - x^2$, and when $x - 12 + y = 0$. That is, when $y = 12 - x$. Combining these, we have $x^2 = 12 - x$, or $x^2 + x - 12 = (x + 4)(x - 3) = 0$. Therefore, the critical points occur when $x = -4$ or $x = 3$, which, since $y = 12 - x$, gives two critical points: $(-4, 16)$, and $(3, 9)$.

We classify these critical points using the second derivative test. Since $f_{xx} = -2x$, $f_{yy} = 1$, and $f_{xy} = f_{yx} = 1$, then $D(x,y) = f_{xx}f_{yy} - (f_{xy}f_{yx})^2 = -2x - 1$. Then $D(-4,16) = -2(-4) - 1 = 7$, and since $7 > 0$ and $f_{xx} > 0$, we know that $(-4, 16)$ is a local min. Also, $D(3, 9) = -2(3) - 1 = -7$, and $-7 < 0$, so $(3, 9)$ is a saddle point.

10. Find the maximum value of $f(x, y, z) = x + 2y - 4z$ on the sphere $x^2 + y^2 + z^2 = 21$.

Solution:

Since we want to maximize one function with respect to a given constraint equation, this problem can be solved using LaGrange multipliers.

Note that $\nabla f = \langle 1, 2, -4 \rangle$ and $\nabla g = \langle 2x, 2y, 2z \rangle$. Then we set $\langle 1, 2, -4 \rangle = \lambda \langle 2x, 2y, 2z \rangle$ and solve, yielding $2\lambda x = 1$, $2\lambda y = 2$, and $2\lambda z = -4$. Thus $x = \frac{1}{2\lambda}$, $y = \frac{1}{\lambda}$, and $z = \frac{-2}{\lambda}$. Plugging these into our constraint equation gives $\left(\frac{1}{2\lambda}\right)^2 + \left(\frac{1}{\lambda}\right)^2 + \left(\frac{-2}{\lambda}\right)^2 = 21$, or $\frac{1}{4\lambda^2} + \frac{1}{\lambda^2} + \frac{4}{\lambda^2} = 21$. Therefore, $\frac{1+4+16}{4\lambda^2} = 21$, so $21 = (21)(4\lambda^2)$. Hence $4\lambda^2 = 1$, or $\lambda^2 = \frac{1}{4}$. Thus $\lambda = \pm \frac{1}{2}$.

If $\lambda = \frac{1}{2}$, then $x = 1, y = 2, z = -4$, and $f(1, 2, -4) = 1 + 4 + 16 = 21$. If $\lambda = \frac{-1}{2}$, then $x = -1, y = -2, z = 4$, and $f(-1, -2, 4) = -1 - 4 - 16 = -21$. Therefore the maximum value of 21 occurs at the point $(1, 2, -4)$.

11. Compute a Riemann sum to estimate the volume of the function $f(x, y) = 3x^2 + 4y$ on the region $0 \le x \le 4$, $2 \le y \le 4$ partitioned into $n = 4$ equal sized rectangles, and evaluating each rectangle at its midpoint. Solution:

There are actually a few reasonable ways to subdivide R into four equal sized rectangles. We will use the following:

Notice that $V \approx \sum$ 4 $i=1$ $f(M_i)\Delta A_i$, where $M_1 = (1, \frac{7}{2})$, $M_2 = (3, \frac{7}{2})$, $M_3 = (1, \frac{5}{2})$, $M_4 = (3, \frac{5}{2})$, and $\Delta A_i = 2$ for every *i*. Then $V \approx (3(1)^2 + 4(\frac{7}{2}))2 + (3(3)^2 + 4(\frac{7}{2}))2 + (3(1)^2 + 4(\frac{5}{2}))2 + (3(3)^2 + 4(\frac{5}{2}))2 = (17)2 + (41)2 + (13)2 + (27)2 = 196$

12. Reverse the order of integration in the following iterated integral: \int_0^9 0 $\int \sqrt{y}$ 0 $f(x, y) dx dy$.

Solution:

Notice that we have $0 \le y \le 9$ and $0 \le x \le \sqrt{y}$. (If $x = \sqrt{y}$, then $y = x^2$)

Then, reversing the order of integration, we have: \int_3^3 0 3 \int_0^9 x^2 $f(x, y) dy dx$ 13. Find an iterated triple integral which gives the volume of the solid bounded by the graphs of $x = y^2 + z^2$ and $x = 2z$. DO NOT EVALUATE THE INTEGRAL.

Solution:

Notice that $x = y^2 + z^2$ is a paraboloid that opens along the positive x-axis, and $x = 2z$ is a plane. To understand the region this volume sits over, we must find the intersection of these two surfaces:

If $y^2 + z^2 = 2z$, then $y^2 + z^2 - 2z = 0$, so $y^2 + z^2 - 2z + 1 = 1$, or $y^2 + (z - 1)^2 = 1$. Therefore, these two surfaces intersect in an ellipse that sits over the circle of radius 1 centered at the point $(0, 1)$ in the yz-plane.

Since the volume we want to compute sits above the paraboloid $x = y^2 + z^2$, below the plane $x = 2z$, and inside the circle $y^2 + (z - 1)^2 = 1$ in the yz-plane, we have the following: $y^2 + z^2 \le x \le 2z$, $-\sqrt{2z - z^2} \le y \le \sqrt{2z - z^2}$, and $0 \le z \le 2$

Hence the intgral is given by $V = \int^2$ 0 $\int \sqrt{2z-z^2}$ $-\sqrt{2z-z^2}$ \int^{2z} $\int_{y^2+z^2} 1\,dx\,dy\,dz$

14. Convert the following integral into an iterated integral in spherical coordinates.
 $\sqrt{2} \sqrt{4\pi x^2} \sqrt{4\pi^2 x^2}$

DO NOT EVALUATE THE INTEGRAL:
$$
\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} \int_0^{\sqrt{4-x^2-y^2}} z \, dz \, dy \, dx.
$$

Solution:

From the given limits of integration, we have: $0 \le x \le \sqrt{2}$, $x \le y \le \sqrt{4-x^2}$, and $0 \le z \le \sqrt{4-x^2-y^2}$. Looking at the outermost two variables, we have an integral over the following region:

If $z = \sqrt{4 - x^2 - y^2}$, then $z^2 = 4 - x^2 - y^2$, or $x^2 + y^2 + z^2 = 4$, so the solid we are integrating over is bounded below by the xy -plane and above by the sphere of radius 2 centered at the origin.

Finally, the integrand $z = \rho \cos \phi$, and the differential is given by $dV = \rho^2 \sin \phi$.

Thus, the following integral represents the original integral translated into spherical coordinates.

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\pi} \int_{0}^{2} \rho \cos \phi \left(\rho^{2} \sin \phi\right) d\rho d\phi d\theta
$$

15. Let $\vec{F}(x, y, z) = \langle 2xy, x^2 - 2z, 12z - 2y \rangle.$

(a) Show that \vec{F} is conservative by finding a potential function for \vec{F} . Solution:

We begin by antidifferentiating each component of the vector field:

 $f(x, y, z) = x^2y + g(y, z)$ $f(x, y, z) = x^2y - 2yz + h(x, z)$ $f(x, y, z) = 6z^2 - 2yz + k(x, y)$

From this, we see that $f(x, y, z) = x^2y - 2yz + 6z^2$ is a potential function for this vector field.

(b) Evaluate $\int^{(1,1,2)}$ $\int\limits_{(0,0,0)}\vec{F}\cdot d\vec{r}.$

Solution:

Using the Fundamental Theorem of line integrals:

 $\int^{(1,1,2)}$ $\begin{bmatrix} \vec{F} & \vec{F} & d\vec{r} = f(1,1,2) - f(0,0,0) = [(1-4+24) - (0)] = 21 \end{bmatrix}$

16. Set up an iterated integral for \int S $g(x, y, z)$ dS where $g(x, y, z) = x^2 z$ and S is the upper half of the ellipsoid $x^2 + z^2 z$ $4y^2 + z^2 = 4$. DO NOT EVALUATE THE INTEGRAL. Solution:

Recall that \int S $g(x, y, z) dS = \int$ R $g(x, y, z) \sqrt{f_x^2 + f_y^2 + 1} dA$, where R is the region in the plane under the surface S, and the surface S is given by $z = f(x, y)$.

In this case, the region R in the plane can be found by taking $z = 0$ in the equation $x^2 + 4y^2 + z^2 = 4$, yielding $x^2 + 4y^2 = 4$, or the ellipse $\frac{x^2}{4}$ $\frac{y}{4} + y^2 = 1$ in the *xy*-plane.

The surface is given by $z = f(x, y) = \sqrt{4 - x^2 - 4y^2}$, so, taking our partial derivatives:

$$
f_x = \frac{1}{2} \left(4 - x^2 - 4y^2 \right)^{-\frac{1}{2}} (-2x) = \frac{-x}{\sqrt{4 - x^2 - 4y^2}}
$$

$$
f_y = \frac{1}{2} \left(4 - x^2 - 4y^2 \right)^{-\frac{1}{2}} (-8y) = \frac{-4y}{\sqrt{4 - x^2 - 4y^2}}
$$

Therefore, the following is an integral representing the surface area of the top half of the ellipsoid:

$$
\int_{-2}^{2} \int_{-\sqrt{1-\frac{x^2}{4}}}^{\sqrt{1-\frac{x^2}{4}}} x^2 z \sqrt{\frac{x^2}{4-x^2-4y^2} + \frac{16y^2}{4-x^2-4y^2} + 1} \, dy \, dx
$$

17. Use Green's Theorem to evaluate q $\mathcal{C}_{0}^{(n)}$ $(y^3 + \sin(x^2)) dx + (x^3 + \cos(y^2)) dy$, where C is the circle $x^2 + y^2 = 4$ traversed counterclockwise. Solution:

Recall that by Green's Theorem, q $\mathcal{C}_{0}^{(n)}$ $(y^3 + \sin(x^2)) dx + (x^3 + \cos(y^2)) dy = \iint$ $\int_R N_x - M_y \ dA.$

Here, $M_y = 3y^2$, $N_x = 3x^2$, and R is the circle of radius 2 centered at the origin.

Then we have \int R $3x^2 - 3y^2$ dA, which we translate into polar coordinates: $\int^{2\pi}$ 0 \int_0^2 0 $(3(r\cos\theta)^2-3(r\sin\theta)^2) r dr d\theta = \int_{0}^{2\pi}$ 0 \int_0^2 0 $3r^3\cos^2\theta - 3r^3\sin^2\theta dr d\theta$ $=$ $\int_{0}^{2\pi}$ 0 3 $\frac{1}{4}r^4 \left[\cos^2 \theta - \sin^2 \theta\right]$ $\begin{array}{c} \hline \end{array}$ 2 0 $d\theta = \int^{2\pi}$ 0 3 $\frac{3}{4}(16)(\cos^2\theta-\sin^2\theta) d\theta$

Recall: $\cos^2 \theta - \sin^2 \theta = \cos(2\theta)$, so we have:

$$
= \int_0^{2\pi} 12 \cos(2\theta) \, d\theta = 6 \sin(2\theta) \bigg|_0^{2\pi} = 0
$$

18. Let $\vec{F} = \langle y^2 + x, y + xz, x \rangle$ and S the sphere $x^2 + y^2 + z^2 = 1$. Use the Divergence Theorem to find $\left| \int \right|$ $\int_{S} \vec{F} \cdot \vec{n} dS,$ where \vec{n} is the outward normal to S at (x, y, z) . By the Divergence Theorem, \int $\int_S \vec{F} \cdot \vec{n} dS = \iiint$ $\bigcup_{Q} \nabla \cdot \vec{F} dV.$ Here, $div(\vec{F}) = \nabla \cdot \vec{F} = 1 + 1 + 0 = 2$ Thus we have: \int $\int_S \vec{F} \cdot \vec{n} dS = \iiint$ Q 2 dV

Since the solid enclosed by the surface is a shere, using a familiar geometric formula: $=2\frac{4}{3}\pi(1)^3 = \frac{8\pi}{3}$ $\frac{\pi}{3}$.

19. Use Stokes' Theorem to evaluate $\iint_{\mathcal{A}} (\nabla \times \vec{F}) \cdot \vec{n} dS$, where S is the portion of $z = \sqrt{4 - x^2 - y^2}$ above the xy-plane, with \vec{n} upward, and $\vec{F} = \langle zx^2, ze^{x+y} - x, x \sin(y^2) \rangle$. Solution:

Since S is given by the portion of $z = \sqrt{4 - x^2 - y^2}$ above the xy-plane, S is a hemisphere with radius 2. Therefore, the boundary of the surface is a circle of radius 2 in the xy -plane, which is a simple closed curve.

Since we are using the upward normal vector, from the righthand rule, we orient give the circle an anticlockwise orientation. This curve has parameterization:

$$
C: \begin{cases} x(t) = 2\cos t \\ y(t) = 2\sin t & 0 \le t \le 2\pi \\ z(t) = 0 \end{cases}
$$

By Stokes' Theorem, \int $\int_S (\nabla \times \vec{F}) \cdot \vec{n} dS = \oint$ $\oint_C \vec{F} \cdot d\vec{r} = \oint$ $\mathcal{C}_{0}^{(n)}$ $zx^2 dx + ze^{x+y} - x dy + x \sin y^2 dz$ $=$ $\int_{0}^{2\pi}$ 0 $0(4\cos^2 t)(-2\sin t) + [(0)e^{2\cos t+2\sin t} - 2\cos t](2\cos t) + (2\cos t\sin(4\sin^2 t))(0) dt = \int_{0}^{2\pi}$ \int_{0} -4 cos² t dt $=$ $\int_{0}^{2\pi}$ \int_{0} -2 - 2 cos 2t dt = -2t - sin 2t $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\overline{}$ 2π 0 $=-4\pi$