
Math 323 Final Exam Practice Problem Solutions

1. Given the vectors ~a = 〈1, 2, 3〉 and ~b = 〈−1, 1, 2〉, compute the following:

(a) 3~a− 2~b

Solution:

3~a− 2~b = 〈3, 6, 9〉+ 〈2,−2,−4〉 = 〈5, 4, 5〉.
(b) ~a×~b.

Solution:

~a×~b =

∣

∣

∣

∣

∣

∣

~i ~j ~k

1 2 3
−1 1 2

∣

∣

∣

∣

∣

∣

=~i(4− 3)−~j(2 + 3) + ~k(1 + 2) = 〈1,−5, 3〉.

(c) A unit vector in the direction opposite ~a.

Solution:

~u = ~a
‖~a‖ = 〈−1,−2,−3〉√

1+4+9
= 〈 −1√

14
, −2√

14
, −3√

14
〉.

(d) The component of ~a along ~b.

Solution:

comp~b~a = ~a·~b
‖~b‖ = 〈1,2,3〉·〈−1,1,2〉√

1+1+4
= (−1+2+6)√

6
= 7√

6
.

(e) The projection of ~b along ~a.

Solution:

proj~a~b =
~b·~a
‖~a‖2~a = 7√

14
2 〈1, 2, 3〉 = 〈 12 , 1, 3

2 〉.

(f) The angle between ~a and ~b

Solution:

cos θ = ~a·~b
‖~a‖‖~b‖ = 7√

14
√
6
= 7

2
√
21
, so θ = cos−1( 7

2
√
21
) ≈ 40.6◦.

(g) A vector which is perpendiclar to ~b

Solution:

There are many possible answers here.

One possibility is ~v = 〈1, 1, 0〉, since then ~b ·~b = 〈1, 1, 0〉 · 〈−1, 1, 2〉 = −1 + 1 + 0 = 0.

2. Evaluate the following limit or show it doesn’t exist: lim
(x,y)→(0,0)

sin(2x2 + 2y2)

x2 + y2

Solution:

Assume that (x, y) → (0, 0) along some curve given by x = f(y).

Then lim
(x,y)→(0,0)

sin(2x2 + 2y2)

x2 + y2
= lim

(f(y),y)→(0,0)

sin(2(f(y))2 + 2y2)

(f(y))2 + y2
. Using L’Hopital’s Rule:

lim
(x,y)→(0,0)

sin(2x2 + 2y2)

x2 + y2
= lim

y→0

(4f(y)f ′(y) + 4y) cos(2(f(y))2 + 2y2)

2f(y)f ′(y) + 2y
= lim

y→0
2 cos(2(f(y))2 + 2y2) = 2 cos(0) = 2.

If (x, y) → (0, 0) along some curve given by y = g(x), a similar computation shows that the limit is 2 in this case as
well. Therefore the limit along any path is 2, so the limit exists and is equal to 2.

3. A projectile is fired with initial speed v0 = 80 feet per second from a height of 6 feet, and at an angle of π
4 above the

horizontal. Assuming that the only force acting on the obeject is gravity, find its maximum altitude, horizontal range,
and speed at impact.

Solution:

We are given that v0 = 80 ft.
sed.

, h = 6ft., θ = π
4 , and g = −32 ft.

sec.2
. Then ~a(t) = 〈0,−32〉, ~v(t) = 〈v0 cos θ, v0 sin θ−32t〉 =

〈40
√
2, 40

√
2− 32t〉, and ~r(t) = 〈(v0 cos θ)t, (v0 sin θ)t− 16t2 + h〉 = 〈40

√
2t, 40

√
2t− 16t2 + 6〉.

The maximum altitude occurs when 40
√
2− 32t = 0, or when t = 40

√
2

32 . Plugging this tim into the vertical coordinate

function of ~r(t) gives the maximum altitude: 40
√
2( 40

√
2

32 )− 16( 40
√
2

32 )2 + 6 = 56 feet.

The horizontal range is giving by finding the impact time, when 40
√
2t − 16t2 + 6 = 0. The positive solution of this

quadratic function is t ≈ 3.6386, so the horizontal range is 40
√
2(3.6386) ≈ 205.83 feet.

The speed at impact is the magnitude of the velocity function ~v(t) at time t ≈ 3.6386. ‖~v(3.6386)‖ = ‖〈40sqrt2, 40
√
2−

32(3.6386)〉‖ = 82.365 ft.
sec.

.



4. Let f(x, y) =
√

x2 + y2. Find fxx and fyx.

Solution:

fx = 1
2 (x

2 + y2)
1

2 (2x) = x√
x2+y2

fy = 1
2 (x

2 + y2)
1

2 (2y) = y√
x2+y2

fxx = (x2 + y2)
−1

2 + (x)(−1
2 )(x2 + y2)

−3

2 (2x)

fyx = (y)(−1
2 )(x2 + y2)

−3

2 (2x)

5. (a) Find the equation of the tangent plane and normal line to the surface z =
√

x2 + y2 at the point (3,4,5).

Solution:

Notice that since z = f(x, y) =
√

x2 + y2, fx = 1
2 (x

2 + y2)
1

2 (2x) = x√
x2+y2

, and fy = 1
2 (x

2 + y2)
1

2 (2y) = y√
x2+y2

.

Then the tangent plane to z = f(x, y) at the point (3, 4, 5) is given by z = f(3, 4)+fx(3, 4)(x−3)+fy(3, 4)(y−4) =
5+ 3

5 (x− 3) + 4
5 (y− 4). The normal line to this plane can be found by parameterising the line through (3, 4, 5) in

the direction of the normal vector to the tangent plane, which is given by ~n = 〈fx(3, 4), fy(3, 4),−1〉 = 〈 35 , 4
5 ,−1〉.

Thus the normal line is given by ℓ :







x(t) = 3 + 3
5 t

y(t) = 4 + 4
5 t

z(t) = 5− t

(b) Use the plane you found in (a) to estimate the value of z when x = 4 and y = 4. How good is the approximation?

Solution:

Approximating using the tangent plane formula derived in part (a) above, we get f(4, 4) ≈ 5+ 3
5 (4−3)+ 4

5 (4−4) =
5 + 3

5 = 5.6

The actual function value is: f(4, 4) =
√
44 + 42 =

√
32 ≈ 5.65685. The approximation appears to be good to

within about 1 decimal place.

(c) Find the direction and magnitude of the maximum rate of change of z = f(x, y) =
√

x2 + y2 at (3,4,5).

Solution:

The maximum rate of change in in the direction of the gradient at (3, 4, 5), namely, 〈 35 , 4
5 〉. The maxnitude of the

maximum rate of change is ‖〈 35 , 4
5 〉‖ =

√

( 35 )
2 + ( 45 )

2 =
√

9
25 + 16

25 =
√

25
25 = 1.

6. Let T (x, y) = 3x2y + xey denote the temperature of a metal plate at the point (x, y). A thermometer is placed at the
point P = (1, 0). At what rate is the temperature changing as the thermometer is moved from P towards the point
(2,-3)?

Solution:

The vector that gives the direction of movement from P to Q is ~v = 〈2 − 1,−3 − 0〉 = 〈1,−3〉. A unit vecot in this
direction is: ~u = 〈 1√

10
, −3√

10
〉. ∇T = 〈6xy + ey, 3x2 + xey〉, so ∇T (1, 0) = 〈0 + e0, 3(1)2 + 1e0〉 = 〈1, 4〉. Therefore,

D~uf(1, 0) = ∇T (1, 0) · ~u = 〈1, 4〉 · 〈 1√
10
, −3√

10
〉 = 1√

10
− 12√

10
= −11√

10
.

7. Use the Chain Rule to find:

(a) g′(t) where g(t) = f(x(t), y(t)), f(x, y) = x2y + y2, x(t) = e4t, and y(t) = sin t.

Solution:

By the Chain Rule, g′(t) = fx(x(t), y(t))(x
′(t))+fy(x(t), y(t))(y

′(t)) = (2xy)(4e4t)+(x2+2y)(cos t) = (2(e4t)(sin t))(4e4t

((e4t)2 + 2 sin t)(cos t) = 8e8t sin t+ e8t cos t+ 2 sin t cos t.

(b) gu and gv where g(u, v) = f(x(u, v), y(u, v)), f(x, y) = 4x2 − y, x(u, v) = u3v + sinu, and y(u, v) = 4v2.

Solution:

By the Chain Rule, gu = (fx)(xu) + (fy)(yu) = (8x)(3u2v + cosu) + (−1)(0) = 8(u3v + sinu)(3u2v + cosu) and
gv = (fx)(xv) + (fy)(yv) = (8x)(u3) + (−1)(8v) = 8(u3v + sinu)(u3)− 8v.

8. Use implicit differentiation to find dz
dx

if x2z − y2x+ 3y − z = −4.

Solution:

Recall that dz
dx

= −Fx

Fz

. Here, Fx = 2xz − y2, and Fz = x2 − 1. Therefore, dy
dz

= y2−2xz
x2−1 .



9. Let f(x, y) = − 1
3x

3 + xy − 12y + 1
2y

2. Find and classify all critical points of f(x, y).

Solution:

To find and classify critical points of a functon of two variables, we first find all points where either both partials are
zero, or where one of the partials is undefined. Notice that fx = −x2 + y and fy = x − 12 + y, which are defined
everywhere, so critical points occur when −x2 + y = 0, that is, when y − x2, and when x− 12 + y = 0. That is, when
y = 12− x. Combining these, we have x2 = 12− x, or x2 + x− 12 = (x+ 4)(x− 3) = 0. Therefore, the critical points
occur when x = −4 or x = 3, which, since y = 12− x, gives two critical points: (−4, 16), and (3, 9).

We classify these critical points using the second derivative test. Since fxx = −2x, fyy = 1, and fxy = fyx = 1, then
D(x, y) = fxxfyy − (fxyfyx)

2 = −2x − 1. Then D(−4, 16) = −2(−4) − 1 = 7, and since 7 > 0 and fxx > 0, we know
that (−4, 16) is a local min. Also, D(3, 9) = −2(3)− 1 = −7, and −7 < 0, so (3, 9) is a saddle point.

10. Find the maximum value of f(x, y, z) = x+ 2y − 4z on the sphere x2 + y2 + z2 = 21.

Solution:

Since we want to maximize one function with respect to a given constraint equation, this problem can be solved using
LaGrange multipliers.

Note that ∇f = 〈1, 2,−4〉 and ∇g = 〈2x, 2y, 2z〉. Then we set 〈1, 2,−4〉 = λ〈2x, 2y, 2z〉 and solve, yielding 2λx = 1,
2λy = 2, and 2λz = −4. Thus x = 1

2λ , y = 1
λ
, and z = −2

λ
. Plugging these into our constraint equation gives

( 1
2λ )

2 + ( 1
λ
)2 + (−2

λ
)2 = 21, or 1

4λ2 + 1
λ2 + 4

λ2 = 21. Therefore, 1+4+16
4λ2 = 21, so 21 = (21)(4λ2). Hence 4λ2 = 1, or

λ2 = 1
4 . Thus λ = ± 1

2 .

If λ = 1
2 , then x = 1, y = 2, z = −4, and f(1, 2,−4) = 1 + 4 + 16 = 21. If λ = −1

2 , then x = −1, y = −2, z = 4, and
f(−1,−2, 4) = −1− 4− 16 = −21. Therefore the maximum value of 21 occurs at the point (1, 2,−4).

11. Compute a Riemann sum to estimate the volume of the function f(x, y) = 3x2 +4y on the region 0 ≤ x ≤ 4, 2 ≤ y ≤ 4
partitioned into n = 4 equal sized rectangles, and evaluating each rectangle at its midpoint.

Solution:

There are actually a few reasonable ways to subdivide R into four equal sized rectangles. We will use the following:

R
3R

2R1R

4

4

y

2

1

4321
x

3

Notice that V ≈
4

∑

i=1

f(Mi)∆Ai, where M1 = (1, 7
2 ), M2 = (3, 7

2 ), M3 = (1, 5
2 ), M4 = (3, 5

2 ), and ∆Ai = 2 for every i.

Then V ≈ (3(1)2+4
(

7
2

)

)2+ (3(3)2+4
(

7
2

)

)2+ (3(1)2+4
(

5
2

)

)2+ (3(3)2+4
(

5
2

)

)2 = (17)2+ (41)2+ (13)2+ (27)2 = 196

12. Reverse the order of integration in the following iterated integral:

∫ 9

0

∫

√
y

0

f(x, y) dx dy.

Solution:

Notice that we have 0 ≤ y ≤ 9 and 0 ≤ x ≤ √
y. (If x =

√
y, then y = x2)

R

1 2
x

4

y

3

6

9

3

Then, reversing the order of integration, we have:

∫ 3

0

∫ 9

x2

f(x, y) dy dx



13. Find an iterated triple integral which gives the volume of the solid bounded by the graphs of
x = y2 + z2 and x = 2z. DO NOT EVALUATE THE INTEGRAL.

Solution:

Notice that x = y2 + z2 is a paraboloid that opens along the positive x-axis, and x = 2z is a plane. To understand the
region this volume sits over, we must find the intersection of these two surfaces:

If y2 + z2 = 2z, then y2 + z2 − 2z = 0, so y2 + z2 − 2z + 1 = 1, or y2 + (z − 1)2 = 1. Therefore, these two surfaces
intersect in an ellipse that sits over the circle of radius 1 centered at the point (0, 1) in the yz-plane.

2 2 x = y  + z 

4

2

x

y

z

Since the volume we want to compute sits above the paraboloid x = y2 + z2, below the plane x = 2z, and inside the
circle y2 + (z − 1)2 = 1 in the yz-plane, we have the following:

y2 + z2 ≤ x ≤ 2z, −
√
2z − z2 ≤ y ≤

√
2z − z2, and 0 ≤ z ≤ 2

Hence the intgral is given by V =

∫ 2

0

∫

√
2z−z2

−
√
2z−z2

∫ 2z

y2+z2

1 dx dy dz

14. Convert the following integral into an iterated integral in spherical coordinates.

DO NOT EVALUATE THE INTEGRAL:

∫

√
2

0

∫

√
4−x2

x

∫

√
4−x2−y2

0

z dz dy dx.

Solution:

From the given limits of integration, we have: 0 ≤ x ≤
√
2, x ≤ y ≤

√
4− x2, and 0 ≤ z ≤

√

4− x2 − y2. Looking at
the outermost two variables, we have an integral over the following region:

3

1

2

3

1 2

x=y

R

x

y

If z =
√

4− x2 − y2, then z2 = 4− x2 − y2, or x2 + y2 + z2 = 4, so the solid we are integrating over is bounded below
by the xy-plane and above by the sphere of radius 2 centered at the origin.

Finally, the integrand z = ρ cosφ, and the differential is given by dV = ρ2 sinφ.

Thus, the following integral represents the original integral translated into spherical coordinates.

∫ π

2

π

4

∫ π

0

∫ 2

0

ρ cosφ
(

ρ2 sinφ
)

dρ dφ dθ

15. Let ~F (x, y, z) = 〈2xy, x2 − 2z, 12z − 2y〉.

(a) Show that ~F is conservative by finding a potential function for ~F .

Solution:

We begin by antidifferentiating each component of the vector field:



f(x, y, z) = x2y + g(y, z)

f(x, y, z) = x2y − 2yz + h(x, z)

f(x, y, z) = 6z2 − 2yz + k(x, y)

From this, we see that f(x, y, z) = x2y − 2yz + 6z2 is a potential function for this vector field.

(b) Evaluate

∫ (1,1,2)

(0,0,0)

~F · d~r.

Solution:

Using the Fundamental Theorem of line integrals:
∫ (1,1,2)

(0,0,0)

~F · d~r = f(1, 1, 2)− f(0, 0, 0) = [(1− 4 + 24)− (0)] = 21

16. Set up an iterated integral for

∫ ∫

S

g(x, y, z) dS where g(x, y, z) = x2z and S is the upper half of the ellipsoid x2 +

4y2 + z2 = 4. DO NOT EVALUATE THE INTEGRAL.

Solution:

Recall that

∫ ∫

S

g(x, y, z) dS =

∫ ∫

R

g(x, y, z)
√

f2
x + f2

y + 1 dA, where R is the region in the plane under the surface

S, and the surface S is given by z = f(x, y).

In this case, the region R in the plane can be found by taking z = 0 in the equation x2 + 4y2 + z2 = 4, yielding

x2 + 4y2 = 4, or the ellipse
x2

4
+ y2 = 1 in the xy-plane.

The surface is given by z = f(x, y) =
√

4− x2 − 4y2, so, taking our partial derivatives:

fx = 1
2

(

4− x2 − 4y2
)− 1

2 (−2x) =
−x

√

4− x2 − 4y2

fy = 1
2

(

4− x2 − 4y2
)− 1

2 (−8y) =
−4y

√

4− x2 − 4y2

Therefore, the following is an integral representing the surface area of the top half of the ellipsoid:

∫ 2

−2

∫

√

1− x
2

4

−
√

1− x
2

4

x2z

√

x2

4− x2 − 4y2
+

16y2

4− x2 − 4y2
+ 1 dy dx

17. Use Green’s Theorem to evaluate

∮

C

(y3 + sin(x2)) dx+ (x3 + cos(y2)) dy, where C is the circle

x2 + y2 = 4 traversed counterclockwise.

Solution:

Recall that by Green’s Theorem,

∮

C

(y3 + sin(x2)) dx+ (x3 + cos(y2)) dy =

∫∫

R

Nx −My dA.

Here, My = 3y2, Nx = 3x2, and R is the circle of radius 2 centered at the origin.

Then we have

∫∫

R

3x2 − 3y2 dA, which we translate into polar coordinates:

∫ 2π

0

∫ 2

0

(

3(r cos θ)2 − 3(r sin θ)2
)

r dr dθ =

∫ 2π

0

∫ 2

0

3r3 cos2 θ − 3r3 sin2 θ dr dθ

=

∫ 2π

0

3

4
r4

[

cos2 θ − sin2 θ
]

∣

∣

∣

∣

∣

2

0

dθ =

∫ 2π

0

3

4
(16)

(

cos2 θ − sin2 θ
)

dθ

Recall: cos2 θ − sin2 θ = cos(2θ), so we have:

=

∫ 2π

0

12 cos(2θ) dθ = 6 sin(2θ)

∣

∣

∣

∣

∣

2π

0

= 0



18. Let ~F = 〈y2 + x, y + xz, x〉 and S the sphere x2 + y2 + z2 = 1. Use the Divergence Theorem to find

∫ ∫

S

~F · ~n dS,

where ~n is the outward normal to S at (x, y, z).

By the Divergence Theorem,

∫ ∫

S

~F · ~n dS =

∫∫∫

Q

∇ · ~F dV .

Here, div(~F ) = ∇ · ~F = 1 + 1 + 0 = 2

Thus we have:

∫ ∫

S

~F · ~n dS =

∫∫∫

Q

2 dV

Since the solid enclosed by the surface is a shere, using a familiar geometric formula: = 2
4

3
π(1)3 =

8π

3
.

19. Use Stokes’ Theorem to evaluate

∫ ∫

S

(∇× ~F ) · ~n dS, where S is the portion of z =
√

4− x2 − y2 above the xy-plane,

with ~n upward, and ~F = 〈zx2, zex+y − x, x sin(y2)〉.
Solution:

Since S is given by the portion of z =
√

4− x2 − y2 above the xy-plane, S is a hemisphere with radius 2. Therefore,
the boundary of the surface is a circle of radius 2 in the xy-plane, which is a simple closed curve.

Since we are using the upward normal vector, from the righthand rule, we orient give the circle an anticlockwise
orientation. This curve has parameterization:

C :







x(t) = 2 cos t
y(t) = 2 sin t 0 ≤ t ≤ 2π
z(t) = 0

By Stokes’ Theorem,

∫ ∫

S

(∇× ~F ) · ~n dS =

∮

C

~F · d~r =

∮

C

zx2 dx+ zex+y − x dy + x sin y2 dz

=

∫ 2π

0

0(4 cos2 t)(−2 sin t) + [(0)e2 cos t+2 sin t − 2 cos t](2 cos t) + (2 cos t sin(4 sin2 t))(0) dt =

∫ 2π

0

−4 cos2 t dt

=

∫ 2π

0

−2− 2 cos 2t dt = −2t− sin 2t

∣

∣

∣

∣

∣

2π

0

= −4π


