
Math 323
Double Integrals

Recall: In Calculus I, when we defined the definite integral, we used the idea of partitions, rectangular approximations, and
Riemann sums. That is, in order to find the area under a continuous function on an interval [a, b], we picked a partition of

points P consisting of points a = x0 < x1 < x2 < ... < xn−1 < xn = b and then computed the Riemann sum A ≈

n
∑

i=1

f(ci)∆xi

where ci ∈ [xi−1, xi] and ∆xi = xi − xi−1.

Then, we defined

∫ b

a

f(x) dx = lim
‖P‖→0

∑

f(ci)∆xi, where ‖P‖ is the maximum value of ∆xi for a partition and where the

limit is taken over all possible refinements of all partitions of [a, b] (provided this limit exists).

Goal: Our new goal is to extend the concept of the definite integral to functions of several variables. We will begin by
discussing the idea of a definite integral of a function f(x, y) over some closed region R in the plane. We usually interpret
this integral as the volume “under” this function of two variables and “inside” the region R. The development of this definite
integral will be quite similar to what we did before. We will begin by approximating the volume. Here, we will think of taking
the region R and choosing a partition P of points (xi, yi) which subdivide R into rectangular sub-regions in the xy-plane. We
then approximate the volume under the function over the region R by computing the sum of the volume of the rectangular
solids whose base is one of the rectangles in the partition of R and whose height is the height of the function f(x, y) at some
point within the rectangle.

With this in mind, for any given partition P of R, we define ‖P‖ to be the maximum diagonal length among all the rectangles

in R formed by the partition, and the Riemann sum for such a partition P is V ≈
∑

Ri,j

f(ui, vj)∆Ai,j , where ∆Ai,j is the area

of a rectangle Ri,j formed by the partition, and (ui, vj) is some choice of point within the rectangle Ri,j .

Definition: Let f be a function of two variables that is defined on a region R in the plane. The double integral of f over

R, denoted by

∫∫

R

f(x, y) dA = lim
‖P‖→0

∑

Ri,j

f(ui, vj)∆Ai,j , provided the limit exists. When this limit exists, we say that the

function f(x, y) is integrable over the region R.

Definition 17.4: Let f be a continuous function of two variables such that f(x, y) ≥ 0 for every (x, y) in a region R. The

volume V of the solid that lies under the graph of z = f(x, y) and over R is: V =

∫∫

R

f(x, y) dA

Note that we are claiming that the limit over all possible refinements of any partition of R exists when f is continuous. Also,
as before, when f takes on negative values, we need to think about the “meaning” of the function f and decide whether we
want to consider “negative volume” or “unsigned volume”.

Now that we have this definition, it is fairly clear how it can be used to estimate the volume under a given function over a
region R. What remains is to find a way to find such volumes exactly – that is, to find a result analogous to the FTC, only
for double integrals.

Before we do this, we pause to consider some properties of double integrals which are analogous the properties of definite
integrals in one variable:

Theorem 17.5: (i)

∫∫

R

cf(x, y) dA = c

∫∫

R

f(x, y) dA for every real number c.

(ii)

∫∫

R

[f(x, y) + g(x, y)] dA =

∫∫

R

f(x, y) dA +

∫∫

R

g(x, y) dA

(iii) If R is the disjoint union of two sets R1 and R2 (R1 ·∪ R2 = R), then:
∫∫

R

f(x, y) dA =

∫∫

R1

f(x, y) dA +

∫∫

R2

f(x, y) dA

(iv) If f(x, y) ≥ 0 throughout R, then

∫∫

R

f(x, y) dA ≥ 0



Idea: In order to compute the value of double integrals exactly, we need a new concept: an iterated integral. As you
might have guessed, just as differentiating functions of more than one variable involved differentiating with respect to one
variable at a time by defining partial derivatives, antidifferentiating functions of several variables will make use of partial
integration.

To evaluate the iterated integral

∫ b

a

[

∫ d

c

f(x, y) dy

]

dx, we first antidifferentiate f with respect to y, then we evaluate y

at each endpoint and simplify, and then we antidifferentiate the result with respect to x and evaluate the result using the
second pair of endpoints, yielding a numerical result.

Example: Let f(x, y) = 2x2y − 4xy2 and R = {(x, y) | 0 ≤ x ≤ 4, 2 ≤ y ≤ 5}

∫ 4

0

[∫ 5

2

2x2y − 4xy2 dy

]

dx =

∫ 4

0



x2y2 −
4

3
xy3

∣

∣

∣

∣

∣

y=5

y=2



 dx =

∫ 4

0

[(

25x2 −
4

3
(125)x

)

−

(

4x2 −
4

3
(8)x

)]

dx

=

∫ 4

0

(

21x2 − 156x dx
)

= 7x3 − 78x2

∣

∣

∣

∣

∣

4

0

= (7(4)3 − 78(4)2) − (0 − 0) = −800.

An interesting question is what happens when we compute the iterated integral in the other order:
∫ 5

2

[∫ 4

0

2x2y − 4xy2 dx

]

dy =

∫ 5

2





2

3
x3y − 2x2y2

∣

∣

∣

∣

∣

x=4

x=0



 dy

=

∫ 5

2

[(

2

3
(64)y − 2(16)y2

)

− (0 − 0)

]

dy =

∫ 5

2

(

128

3
y − 32y2 dy

)

=
64

3
y2 −

32

3
y3

∣

∣

∣

∣

∣

5

2

= (
64

3
(25) −

32

3
(125)) − (

64

3
(4) −

32

3
(8)) = −(800) − (0) = −800.

It turns out this this is not a coincidence. Over an rectangular region, if f(x, y) is integrable over R, then both iterated
integrals give the same value.

Definition 17.6:

(I)

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ b

a

[

∫ d

c

f(x, y) dy

]

dx (II)

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ d

c

[

∫ b

a

f(x, y) dx

]

dy

Notes:
• This notation describes iterated integrals over a rectangular region of the plane. We work the innermost integral first,
then the outer integral in each case.
• We can also compute iterated integrals over regions bounded either vertically by curves g1(x) and g2(x) or horizontally by
curves h1(y) and h2(y):

Definition 17.6:

(I)

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx =

∫ b

a

[

∫ g2(x)

g1(x)

f(x, y) dy

]

dx (II)

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy =

∫ d

c

[

∫ h2(y)

h1(y)

f(x, y) dx

]

dy

Intuitively, when we compute an iterated integral, we think of slicing the volume under the curve either horizontally (or
vertically) into infinitely this cross sections. The inner integral in our iterated integral can be thought of as finding a formula
for the area of each cross section, and the outer integral “adds up” the area of each slice as we run through all values of that
variable over the region under consideration.

Theorem 17.8 (Fubini):
(I) Let R be a region in the plane bounded horizontally by functions g1(x) and g2(x). and suppose that f(x, y) is continuous
on R, then
∫∫

R

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

(II) Let R be a region in the plane bounded vertically by functions h1(y) and h2(y). and suppose that f(x, y) is continuous
on R, then
∫∫

R

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy



Examples:

1. Evaluate

∫∫

R

f(x, y) dA where f(x, y) = 2xy, and R is the region bounded by g1(x) = x2 − 1 and g2(x) = 1 − x2

2. Evaluate

∫∫

R

f(x, y) dA where f(x, y) = 3x2 − 2xy, and R is the region bounded by h1(y) = y and h2(y) = y2

3. Evaluate

∫ 1

0

∫ 1

y

ex2

dx dy


