
Math 323
Exam 3 Name:

Instructions: You will have 55 minutes to complete this exam. The credit given on each problem will be proportional to
the amount of correct work shown. Answers without supporting work will receive little credit.

1. Let z = f(x, y) = e
√

y−x2+1.

(a) (8 points) Sketch the domain of this function.

Notice that to be in the domain of this function, we need y − x2 + 1 ≥ 0, or y ≥ x2 + 1. Thus the domain of this
function is the subset of the xy-plane on or above the parabola given by the equation y = x2 − 1 (See the graph
below).
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(b) (8 points) Sketch contours for z = f(x, y) when z = 1 and when z = e.

When z = 1, f(x, y) = e
√

y−x2+1 = 1 = e0, so
√

y − x2 + 1 = 0. Thus y − x2 + 1 = 02 = 0, or y = x2 − 1.

When z = e, f(x, y) = e
√

y−x2+1 = e1, so
√

y − x2 + 1 = 1. Thus y − x2 + 1 = 12 = 1, or y = x2.
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2. (10 points) Show that lim
(x,y)→(0,0)

xy

x2 + 2xy + y2
does not exist.

Computing the limit along many pairs of paths would show that this limit does not exist. Here is one possible pair:

Along y = 0: lim
(x,0)→(0,0)

0

x2
= 0 (technically, we use L’Hopital’s Rule twice to evaluate this limit in one variable).

Along x = y: lim
(x,x)→(0,0)

x2

x2 + 2x2 + x2
= lim

(x,x)→(0,0)

x2

4x2
= lim

(x,x)→(0,0)

1

4
=

1

4
.

Since the value of the limit along these two paths does not agree, this limit does not exist.



3. Given the equation: 4 cos (xyz) + x3y − 3yz2 − 7 = 0:

(a) (8 points) Use implicit differentiation to find
∂z

∂x

Recall that
∂z

∂x
= −Fx

Fz

.

Also, Fx = −4yz sin(xyz) + 3x2y and Fz = −4xy sin(xyz)− 6yz.

Then
∂z

∂x
= −−4yz sin(xyz) + 3x2y

−4xy sin(xyz)− 6yz
=

−4z sin(xyz) + 3x2

4x sin(xyz) + 6z

(b) (8 points) Find an equation for the tangent plane to this surface at the point (0,−1, 1).

We first use the gradient to find a normal vector to the tangent plane:

∇F = 〈Fx, Fy, Fz〉 = 〈−4yz sin(xyz) + 3x2y,−4xz sin(xyz) + x3 − 3z2,−4xy sin(xyz)− 6yz〉

Then ∇F (0,−1, 1) = 〈−4(−1)(1) sin(0) + 3(0)2(−1),−4(0)(1) sin(0) + 03 − 3(1)2,−4(0)(−1) sin(0)− 6(−1)(1)〉 =
〈0,−3, 6〉 = ~n

Using ~n = 〈0,−3, 6〉 and the point P (0,−1, 1), the desired tangent plane has the following formula:

0(x− 0)− 3(y + 1) + 6(z − 1) = 0. Simplifying gives −3y − 3 + 6z − 6 = 0 or y − 2z = −3

4. (10 points) Let w = f(x, y) = 5x2y3.
Find the differential dw and use it to approximate ∆w as the input changes from (1, 2) to (1.1, 1.8)

First, recall that dw = fx(x, y)dx+ fy(x, y)dy.

Here, fx(x, y) = 10xy2, fy(x, y) = 15x2y2, dx = ∆x = 0.1, dy = ∆y = −0.2, x = 1, and x = 2.

Then dw = 10xy2dx+ 15x2y2dy = 10(1)(2)3(0.1) + 15(1)2(2)2(−0.2)

= (80)(0.1) + (60)(−0.2) = 8− 12 = −4.



5. (10 points) Suppose w = f(x, y) where x = 2s2t2 and y = 4s− t. Also suppose that fx(x, y) = 2xy and fy(x, y) = x2.

Find the value of
∂w

∂s
when s = 1 and t = 2.

Recall that ∂w
∂s

= ∂w
∂x

· ∂x
∂s

+ ∂w
∂y

· ∂y
∂s

= fx(x, y) · ∂x
∂s

+ fy(x, y) · ∂y
∂s

Furthermore, ∂x
∂s

= 4st2, ∂y
∂s

= 4, and we are given fx(x, y) = 2xy and fy(x, y) = x2.

Then ∂w
∂s

= (2xy)(4st2) + (x2)(4). Notice that when s = 1 and t− 2, then x = 2(1)2(2)2 = 8, and y = 4(1) = 2 = 2.

Substituting, we have ∂w
∂s

= 2(8)(2) · 4(1)(2)2 + 82(4) = 512 + 256 = 768.

6. (10 points) Given that z = f(x, y) = xexy find the derivative of f at the point (1, 1) and in the direction of the vector
〈−4, 3〉.

Recall that D~uf(a, b) = ∇f(a, b) · ~u. Here, ∇f = 〈fx, fy〉 = 〈exy + xyexy, x2exy〉

Then ∇f(1, 1) = 〈e1 + (1)(1)e1, (1)2e1〉 = 〈2e, e〉.

Also, ~u =
~v

‖~v‖ =
〈−4, 3〉√
16 + 9

=
〈−4, 3〉√

25
= 〈−4

5
,
3

5
〉

Then D~uf(1, 1) = ∇f(1, 1) · ~u = 〈2e, e〉 · 〈− 4
5 ,

3
5 〉 = − 8e

5 + 3e
5 = − 5e

5 = −e

7. (16 points) Find all the critical points of f(x, y) = 3x− x3 − 2y3 + 3y2, and classify them using the Discriminant.

Since f(x, y) is continuous (it is a polynomial in two variables), its critical points occur when fx = fy = 0. Notice that
fx(x, y) = 3− 3x2 and fy(x, y) = −6y2 + 6y.

If fx = 0, then 3− 3x2 = 0, so 3x2 = 3, or x2 = 1. Thus x = ±1.

Similarly, if fy = 0, then −6y2 + 6y = 0, or −6y(y − 1) = 0. Thus y = 0 or y = 1.

Therefore, the critical values for this function are: (1, 0), (−1, 0), (1, 1), and (−1, 1).

Next, we classify these critical values using the discriminant. Recall that D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2
.

Notice that fxx = −6x, fyy = −12y + 6, and fxy = 0. Then we have the following:

D(1, 0) = (−6)(6)− 02 = −36, so a saddle point occurs at (1, 0, f(1, 0)).

D(−1, 0) = (6)(6)− 02 = 36, and fxx(−1, 0) = 6 > 0 so a local minimum occurs at (−1, 0, f(−1, 0)).

D(1, 1) = (−6)(−6)− 02 = 36, and fxx(1, 1) = −6 < 0 so a local maximum occurs at (1, 1, f(1, 1)).

D(−1, 1) = (6)(−18)− 02 = −108, so a saddle point at (−1, 1, f(1, 1)).



8. (16 points) Use Lagrange multipliers to find the vector in 3-space whose length is 5 and whose components have the
largest possible sum.

Notice that we are trying to maximize the sum of the components of a 3D vector ~v = 〈a, b, c〉. Therefore, the function
we want to maximize is f(a, b, c) = a+ b+ c.

Next, we see that the length of the vector must be 5. Since the length is given by the magnitude or norm of the vector,
this tells us that ‖~v‖ =

√
a2 + b2 + c2 = 5, or, in a much nicer form: a2 + b2 + c2 = 25. This tells us that the contraint

is given by g(a, b, c) = a2 + b2 + c2 − 25 = 0.

Using Lagrange’s method, we recall that solutions occur when ∇f = λ∇g and at points where the constraint equation
g(x, y) = 0 is satisfied.

We see that ∇f = 〈fa, fb, fc〉 = 〈1, 1, 1, 〉 and ∇g = 〈ga, gb, gc〉 = 〈2a, 2b, 2c〉

Then we have 1 = λ2a 1 = λ2b and 1 = λ2c. Therfore, 1
2λ = a = b = c.

Combining this with the constraint equation g(a, b, c) = a2 + b2 + c2 − 25 = 0 gives a2 + a2 + a2 − 25 = 0, or 3a2 = 25.

Then a2 = 25
3 , so a = ± 5

√
3

3 .

Since the negative value cannot give a maximum, we conclude that the maximum values occurs when a = b = c = 5
√
3

3 .

Hence the vector in 3-space whose length is 5 and whose components have the largest possible sum is

〈

5
√
3

3
,
5
√
3

3
,
5
√
3

3

〉


