Math 323 Green's Theorem Examples

Recall: Green's Theorem States: Let C be a piecewise smooth simple closed curve, and let R be the region consisting of C and its interior. If M and N are continuous functions that have continuous first parial derivatives throughout an open region D containing R, then:

$$\oint_{\mathcal{C}} M \, dx + N \, dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA$$

Similarly: working backwards: Let R be a regoin in the xy plane bounded by a piecewise smooth simple closed curve C. Then the area A of R is given by:

$$A = \oint_{\mathcal{C}} x \, dy = -\oint_{\mathcal{C}} y \, dx = \frac{1}{2} \oint_{\mathcal{C}} x \, dy - y \, dx$$

Examples:

1. Use Green's Theorem to evaluate $\oint_{\mathcal{C}} 3y, dx + 2x^2 dy$ where \mathcal{C} is the circle $x^2 + y^2 = 4$ oriented counterclockwise.

Notice this for this line integral, M(x,y) = 3y and $N(x,y) = 2x^2$, so $M_y = 3$ and $N_x = 4x$. Using Green's Theorem, we see that

 $\oint_{\mathcal{C}} M \, dx + N \, dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA = \iint_{R} 4x - 3 \, dA, \text{ where } R \text{ is the circle of radius 2 centered at the origin.}$

Changing to polar coordinates, we have: $\int_{0}^{2\pi} \int_{0}^{2} (4r\cos\theta - 3) r dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} 4r^{2}\cos\theta - 3r dr d\theta = \int_{0}^{2\pi} \frac{4}{3}r^{3}\cos\theta - \frac{3}{2}r^{2}\Big|_{0}^{2} d\theta$

$$= \int_{0}^{1} 2\pi \frac{32}{3} \cos \theta - 6 \, d\theta = \frac{32}{3} \sin \theta - 6 \theta \Big|_{0}^{2\pi} = -12\pi$$

2. Use a line integral to find a formula for the area of an ellipse of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

An ellipse of this form is given by the following parameterization: $C = \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$ for $0 \le t \le 2\pi$

Notice that $x'(t) = -a \sin t$ and $y'(t) = b \cos t$. It turns out that the "averaged" form for using Green's Theorem to compute area works out the smoothest, so we compute: $A = \frac{1}{2} \oint_{\mathcal{C}} x \, dy - y \, dx = \frac{1}{2} \int_{0}^{2\pi} (a \cos t) (b \cos t) - (b \sin t) (-a \sin t) \, dt = \frac{1}{2} \int_{0}^{2\pi} ab \cos^2 t + ab \sin^2 t \, dt$ $= \frac{1}{2} \int_{0}^{2\pi} ab \, dt = \frac{1}{2} abt \Big|_{0}^{2\pi} = \pi ab.$