Math 323 Green's Theorem Examples

Recall: Green's Theorem States: Let C be a piecewise smooth simple closed curve, and let R be the region consisting of C and its interior. If M and N are continuous functions that have continuous first parial derivatives throughout an open region D containing R , then:

$$
\oint_{\mathcal{C}} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA
$$

Similarly: working backwards: Let R be a regoin in the xy plane bounded by a piecewise smooth simple closed curve \mathcal{C} . Then the area A of R is given by:

$$
A = \oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx
$$

Examples:

1. Use Green's Theorem to evaluate $\oint_C 3y, dx + 2x^2 dy$ where C is the circle $x^2 + y^2 = 4$ oriented counterclockwise.

Notice this for this line integral, $M(x, y) = 3y$ and $N(x, y) = 2x^2$, so $M_y = 3$ and $N_x = 4x$. Using Green's Theorem, we see that

I $\int\limits_{\mathcal{C}} M\,dx + N\,dy = \int\int$ R $\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dA = \iint$ R $4x - 3 dA$, where R is the circle of radius 2 centered at the origin.

Changing to polar coordinates, we have: $\int_0^{2\pi}$ \int_0^2 $\int_0^2 (4r\cos\theta - 3) \ r dr d\theta = \int_0^{2\pi}$ $\overline{0}$ \int_0^2 $\int_0^2 4r^2 \cos \theta - 3r \, dr d\theta = \int_0^{2\pi}$ $\overline{0}$ 4 $\frac{4}{3}r^3\cos\theta -$ 3 $\frac{3}{2}r^2\Big|$ 2 \int_0^{θ}

$$
= \int_0^1 2\pi \frac{32}{3} \cos \theta - 6 d\theta = \frac{32}{3} \sin \theta - 6\theta \Big|_0^{2\pi} = -12\pi
$$

2. Use a line integral to find a formula for the area of an ellipse of the form $\frac{x^2}{2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $\frac{9}{b^2} = 1$

An ellipse of this form is given by the following parameterization: $\mathcal{C} = \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$ $x = u \cos t$ for $0 \le t \le 2\pi$

Notice that $x'(t) = -a \sin t$ and $y'(t) = b \cos t$. It turns out that the "averaged" form for using Green's Theorem to compute area works out the smoothest, so we compute: $A = \frac{1}{2}$ 2 I $\oint_C x\,dy - y\,dx\,=\,\frac{1}{2}$ 2 $\int^{2\pi}$ $(a \cos t) (b \cos t) (b\sin t)$ $(-a\sin t) dt = \frac{1}{2}$ 2 $\int^{2\pi}$ $\int\limits_{0}^{\infty} ab \cos^{2} t + ab \sin^{2} t dt$ $=\frac{1}{2}$ 2 $\int^{2\pi}$ $\int_{0}^{2\pi} ab \, dt = \frac{1}{2}$ $rac{1}{2}abt$ 2π $_0 = \pi ab.$