MDEV 127 Functions

Definition 1:

• A function is a correspondence or rule that assigns to each element in one set, called the domain D, *exactly one* element from a second set, called the range R.

• Alternatively, we can think of a **function** as a set of ordered pairs in which no two different ordered pairs have the same first coordinate. The domain D is the set of all *first coordinates*. The range R is the set of all *second coordinates*.

Definition 2:

• A relation is a correspondence or rule that assigns to each element in one set, called the domain D, one or more elements from a second set, called the range R.

• Alternatively, we can think of a **relation** as any set of ordered pairs. The domain D is the set of all *first coordinates*. The range R is the set of all *second coordinates*.

Examples:

1. Which of the following rules are functions?

Domain	Rule: add 3	Range	Domain	Rule: mult. by 2	Range
0	0 + 3	3	0	$0 \cdot 2$	0
2	2 + 3	5	2	$2 \cdot 2$	4
4	4 + 3	7	4	$4 \cdot 2$	8
x	x+3	x+3	х	$x \cdot 2$	2x

Domain	Rule: mult. by 2	Range
	then add 3	
0	$(0 \cdot 2) + 3$	3
2	$(2 \cdot 2) + 3$	7
4	$(4 \cdot 2) + 3$	11
x	$(x \cdot 2) + 3$	2x + 3

2. $\{(0,1), (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8)\}$

 $3. \ \{(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,5),(5,4),(4,3),(3,2),(2,1),(1,0)\}$

 $4. \ \{(Brian, green), (Anna, blue), (Robert, red), (Allan, black), (Louise, pink), (Fred, yellow), (Bradley, red)\}$

Graphing:

To draw the graph of a function or relation involving numbers, we plot the ordered pairs defined by the rule for the function in the Cartesian Plane.

Example: Suppose our function is given by the rule $h = 5t - t^2$, where h represents the height of an object t seconds after it has been thrown.

t	h
0	$5(0) - 0^2 = 0 - 0 = 0$
1	$5(1) - 1^2 = 5 - 1 = 4$
2	$5(2) - 2^2 = 10 - 4 = 6$
3	$5(3) - 3^2 = 15 - 9 = 6$
4	$5(4) - 4^2 = 20 - 16 = 4$
5	$5(5) - 5^2 = 25 - 25 = 0$

The Vertical Line Test:

A graph of points in the plane is the graph of a function if and only if every vertical line intersects the graph at most once.

Examples:

Which of these graphs are the graph of a function? For those that are, what are the domain and range?

Function Notation: Given a function f from a domain set D to a range set R, we will often use x to refer to elements from D and y to refer to elements from R. In this case, we will write out the rule for our function as: y = f(x), read "y equals f of x".

We say that x the **argument** of f and we will call y the **value** of f at x.

• To evaluate a function, we input an x-value and find the corresponding value by applying the "rule" for the function to that input.

• Sometimes we may also want to work backwards. That is, for a given **output** y, we may want to find out which input(s) lead to the output y.

Examples:

Suppose $f(x) = \frac{x+1}{x-1}$. Then: $f(2) = \frac{2+1}{2-1} = \frac{3}{1} = 3$ $f(-1) = \frac{-1+1}{-1-1} = \frac{0}{-2} = 0$ $f(2a-1) = \frac{(2a-1)+1}{2a-1-1} = \frac{2a}{2a-2} = \frac{2a}{2(a-1)} = \frac{2}{a-1}$ $f(3a-2b) = \frac{(3a-2b)+1}{(3a-2b)-1} = \frac{3a-2b+1}{3a-2b-1}$ If f(x) = 2, that what is x? $\frac{x+1}{x-1} = 2$, so x + 1 = 2(x-1) = 2x - 2. Then x + 3 = 2x, or 3 = x. Check: $f(3) = \frac{3+1}{3-1} = \frac{4}{2} = 2$. The domain of f is ? **Example:** Let $g(x) = x^2 + 2x - 3$ Find: • g(0)

• g(3)

• g(2b)

• g(-1)

Find: (a) f(4)

(b)
$$x$$
 if $f(x) = 1$

(c) the domain of f

(d) the range of f