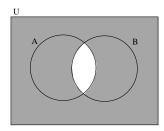
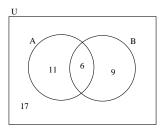
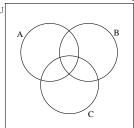

Note: Last time, while we were looking at set operations, we briefly introduced the concept of a Venn Diagram. Venn Diagrams turn out to be a very important and useful tool for understanding sets. We will now look at some of the uses of these diagrams in more detail.


Two Set Venn Diagrams: The following diagram shows the standard Venn Diagram for two sets A and B.

Looking carefully at this diagram, we see that it is divided into 4 regions. These regions represent the elements in A but not in B, the elements in both A and B, the elements in B but not in A, and the elements in neither A nor B.


We will use two set Venn diagrams in 2 main ways.

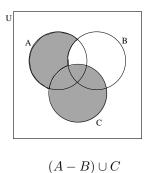
• We can use Venn diagrams to illustrate the result of carrying out set operations by shading regions in the Venn diagram. **Example:** Use a Venn diagram to represent the set $(A \cap B)'$

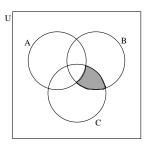

• We can use Venn diagrams to count the number of elements of each type by placing numbers in the regions of the Venn diagram.

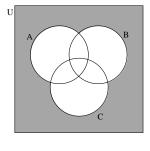
Example:

From the diagram above, we see that n(A) = 17, n(B) = 15, n(B') = 28, and $n(A \cup B') = 17$

Three Set Venn Diagrams: The following diagram shows the standard Venn Diagram for three sets A, B, and C.

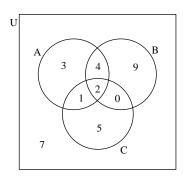



Looking carefully at this diagram, we see that it is divided into 8 regions. These regions represent the elements in A, B, and C, in A and B but not C, in A and C but not B, in B and C but not A, in only A, only B, only C, and the elements outside of A, B, and C.


We can once again use three set Venn diagrams in 2 main ways.

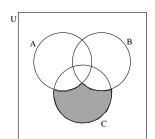
• We can use Venn diagrams to illustrate the result of carrying out set operations by shading regions in the Venn diagram.

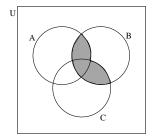
Example: Use a Venn diagram to represent the sets $(A - B) \cup C$, $(B - A) \cap C$ and $(A \cup B \cup C)'$

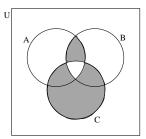


 $(B-A)\cap C$

 $(A \cup B \cup C)'$


• We can use Venn diagrams to count the number of elements of each type by placing numbers in the regions of the Venn diagram.


Example:



From the diagram above, we see that n(A) = 10, n(B) = 15, $n(A \cap C) = 3$, and $n(B \cup C) = 14$

Examples: Sometimes, you will be asked to work backwards from a Venn Diagram. That is, given a diagram with certain regions shaded, you will be asked to write a combination of set operations that can be used to describe the shaded regions.

