
Math 327
Basis and Dimension

Recall: A set of vector S = {~v1, ~v2, · · · , ~vk} in a vector space V forms a basis for V if both of the following hold:
(a) spanS = V (that is, the vector space V is spanned by the set S) (b) S is a linearly independent set.

Examples:

1.

2.

3.

Definition: A vector space V is finite dimensional if there is a finite subset of V that is a basis for V . If no such subspace
exists, then we say that V is infinite dimensional.

Note: If S1 = {~v1, ~v2, · · · , ~vk} is a basis for V , then S2 = {c ~v1, ~v2, · · · , ~vk} for c 6= 0 is also a basis, so bases aren’t unique.

Theorem 4.8: If S = {~v1, ~v2, · · · , ~vk} is a basis for a vector space V then every vector in V can be written in one and only
one way as a linear combination of vectors in V .

Proof: Let S = {~v1, ~v2, · · · , ~vk} be a basis for a vector space V and suppose ~v ∈ V . Since S spans V , there is at least one
way of expressing ~v as a linear combination in S. Suppose that ~v = a1 ~v1 + a2 ~v2 + · · ·+ ak ~vk and ~v = b1 ~v1 + b2 ~v2 + · · ·+ bk ~vk.

Then ~0 = ~v − ~v = (a1 − b1)~v1 + (a2 − b2)~v2 + · · · + (ak − bk) ~vk. Since S is linearly independent, we must have (a1 − b1) =
(a2 − b2) = · · · = (ak − bk) = 0. That is, ai = bi for all i = 1 · · ·n. 2.

Theorem 4.9: Let S = {~v1, ~v2, · · · , ~vk} be a set of non-zero vectors in a vector space V and suppose W = spanS. Then
some subset of S is a basis for W .

Proof: First, notice that if S is linearly independent, then S is a basis for W .

Suppose that S is linearly dependent. Then, using Theorem 4.7, some vector vj in S can be written as a linear combination
of the other vectors in S. Hence, we may delete this vector from S to obtain a strictly smaller set S1 that still spans W . If
S1 is linearly independent, then it is a basis for W . Otherwise, we may apply the same procedure to delete a vector from S1.
Since a single non-zero vectors is linearly independent and S is a finite set, repeating this procedure must eventually produce
a basis for W .

Note: The proof of Theorem 4.9 suggests the following algorithm for finding a basis of a subspace W of a vector space V :

• Step 0: Begin with a set S = {~v1, ~v2, · · · , ~vk} such that spanS = W .

• Step 1: Consider the equation a1 ~v1 + a2 ~v2 + · · · + ak ~vk = ~0. Solve this system for a1, a2, · · · , ak by representing this
system as a matrix and applying the Gauss-Jordan method to put the augmented matrix into reduced row echelon
form. If a1 = a2 = · · · = ak = 0, then S is already a basis.

• Step 2: If not, find a vector vj that is a linear combination of the other vectors in S and delete it from the set S,
obtaining a smaller set S1.

• Repeat Steps 1 and 2 for the new set S1. This process will eventually produce a basis for W .



Special Case: If V = Rn or V = Rn, then the following more efficient method can be used:

• Step 0: Begin with a set S = {~v1, ~v2, · · · , ~vk} such that spanS = W .

• Step 1: Consider the equation a1 ~v1 + a2 ~v2 + · · · + ak ~vk = ~0. Solve this system for a1, a2, · · · , ak by representing this
system as a matrix and applying the Gauss-Jordan method to put the augmented matrix into reduced row echelon
form.

• Step 2: The collection of vectors corresponding to the columns that contain a leading 1 form a basis for W .

Theorem 4.10: If S = {~v1, ~v2, · · · , ~vn} is a basis for a vector space V , and T = { ~w1, ~w2, · · · , ~wr} is a linearly independent
set in V , then r ≤ n

Proof:

Corollary 4.1: If S = {~v1, ~v2, · · · , ~vn} and T = { ~w1, ~w2, · · · , ~wm} are bases for a vector space V , then m = n.

Proof: Applying Theorem 4.10 to S and T , we have that m ≤ n. Reversing the roles of the two sets and applying Theorem
4.10 again, we have n ≤ m. Hence m = n. 2

Notes: A single vector space V can have many different bases.

Definition: The dimension of a non-zero vector space V is the number of vectors in a basis for V . This is well defined by
Corollary 4.1. We denote this as: dimV .

Note: By convention, dim {~0} = 0.

Examples:

• Both Rn and Rn have dimension n. (What is the dimension of Mmn?)

• Pn has dimension n+ 1 (for example, since P2 = {p(t) : p(t) = at2 + bt+ c}, then dimP2 = 3).

• P is infinite dimensional.

Definition: Let S be a set of vectors in a vector space V . A subset T of S is called a maximal independent subset of
S if T is a linearly independent set of vectors that is not properly contained in any other linearly independent subset of S.
Similarly, a minimal spanning set of a vector space V is a set S of vectors that spans V and that does not contain any
proper subset that spans V .

Corollary 4.2: If dimV = n, then any maximal independent subset of V contains n vectors.

Corollary 4.3: If a vector space V has dimension n, then any minimal spanning set of V contains n vectors.

Corollary 4.4: If a vector space V has dimension n, then any set of m > n vectors is linearly dependent.

Corollary 4.5: If a vector space V has dimension b, then any set of m < n vectors does not span V .


