Math 327

Basis and Dimension

Recall: A set of vector S = {v7,03,- -, 0} in a vector space V forms a basis for V if both of the following hold:
(a) span S =V (that is, the vector space V is spanned by the set S) (b) S is a linearly independent set.
Examples:

1.

2.

3.

Definition: A vector space V is finite dimensional if there is a finite subset of V' that is a basis for V. If no such subspace
exists, then we say that V is infinite dimensional.

Note: If S; = {v1,v3, - ,v1} is a basis for V, then Sy = {cv1, 03, ,vi} for ¢ # 0 is also a basis, so bases aren’t unique.

Theorem 4.8: If S = {vi,v3,---,v;.} is a basis for a vector space V then every vector in V' can be written in one and only
one way as a linear combination of vectors in V.

Proof: Let S = {v1,03,-+,v;} be a basis for a vector space V' and suppose ¥ € V. Since S spans V', there is at least one
way of expressing ¥’ as a linear combination in S. Suppose that ¥ = a1v7 + a903 + - - - + agvj and U = by1v] + bovs + - - - + b V.

Then 0 = ¥ — 7 = (a1 — b1)v1 + (ag — b2)vs + -+ - + (a — by )vr. Since S is linearly independent, we must have (a; — b1) =
(ag —bg) =+ =(ar, —br) =0. That is, a; = b; forall i =1---n. O.

Theorem 4.9: Let S = {01,03,--- ,0;} be a set of non-zero vectors in a vector space V and suppose W = span S. Then
some subset of S is a basis for W.

Proof: First, notice that if S is linearly independent, then S is a basis for W.

Suppose that S is linearly dependent. Then, using Theorem 4.7, some vector v; in S can be written as a linear combination
of the other vectors in S. Hence, we may delete this vector from S to obtain a strictly smaller set S; that still spans W. If
51 is linearly independent, then it is a basis for W. Otherwise, we may apply the same procedure to delete a vector from S .
Since a single non-zero vectors is linearly independent and S is a finite set, repeating this procedure must eventually produce
a basis for W.

Note: The proof of Theorem 4.9 suggests the following algorithm for finding a basis of a subspace W of a vector space V:

e Step 0: Begin with a set S = {v1,v3,-- , Ui} such that span S = W.

e Step 1: Consider the equation a;0} + asvi + - - - + ayvj, = 0. Solve this system for ai,as, - - - ,a; by representing this
system as a matrix and applying the Gauss-Jordan method to put the augmented matrix into reduced row echelon
form. If a; = ags =--- =ap =0, then S is already a basis.

e Step 2: If not, find a vector v; that is a linear combination of the other vectors in S and delete it from the set S,
obtaining a smaller set S;.

e Repeat Steps 1 and 2 for the new set S7. This process will eventually produce a basis for W.



Special Case: If V = R"™ or V = R,,, then the following more efficient method can be used:

e Step 0: Begin with a set S = {v1,v3,- - ,v;} such that span S = W.

e Step 1: Consider the equation aiv7 + asts + - - - + av;, = 0. Solve this system for aq,as, - ,ay by representing this
system as a matrix and applying the Gauss-Jordan method to put the augmented matrix into reduced row echelon
form.

e Step 2: The collection of vectors corresponding to the columns that contain a leading 1 form a basis for W.

Theorem 4.10: If S = {v7,03,--- ,U,} is a basis for a vector space V, and T = {w}, w5, - ,w,} is a linearly independent
set in V, then r <n

Proof:

Corollary 4.1: If S = {47,903, ,4,} and T = {wy,ws, -+ ,w,,} are bases for a vector space V', then m = n.

Proof: Applying Theorem 4.10 to S and T', we have that m < n. Reversing the roles of the two sets and applying Theorem
4.10 again, we have n < m. Hence m =n. O

Notes: A single vector space V' can have many different bases.

Definition: The dimension of a non-zero vector space V is the number of vectors in a basis for V. This is well defined by
Corollary 4.1. We denote this as: dim V.

Note: By convention, dim {0} = 0.
Examples:
e Both R™ and R, have dimension n. (What is the dimension of M,,,?)
e P, has dimension n + 1 (for example, since Py = {p(t) : p(t) = at® + bt + c}, then dim Py = 3).

e P is infinite dimensional.

Definition: Let S be a set of vectors in a vector space V. A subset T of S is called a maximal independent subset of
S if T is a linearly independent set of vectors that is not properly contained in any other linearly independent subset of S.
Similarly, a minimal spanning set of a vector space V is a set S of vectors that spans V and that does not contain any
proper subset that spans V.

Corollary 4.2: If dimV = n, then any maximal independent subset of V' contains n vectors.
Corollary 4.3: If a vector space V' has dimension n, then any minimal spanning set of V' contains n vectors.
Corollary 4.4: If a vector space V' has dimension n, then any set of m > n vectors is linearly dependent.

Corollary 4.5: If a vector space V' has dimension b, then any set of m < n vectors does not span V.



