Note: We now know that the following statements are all equivalent for an $n \times n$ matrix A:

- A is non-singular.
- $A\vec{x} = \vec{0}$ has only the trivial solution.
- A is row (column) equivalent to I_n .
- For every \vec{b} in \mathbb{R}^n , $A\vec{x} = \vec{b}$ has a unique solution.
- A is the product of elementary matrices.
- $det(A) \neq 0$
- rank A = n
- The rows (columns) of A form a linearly independent set of n vectors in R_n (R^n).
- The dimension of the solution space of $A\vec{x} = \vec{0}$ is zero.
- The linear transformation $L: \mathbb{R}^n \to \mathbb{R}^n$ defined by $L(\vec{x}) = A\vec{x}$ for $\vec{x} \in \mathbb{R}^n$ is one to one and onto.

Note: We also know that the following statements are all equivalent for a linear transformation $L: V \to W$ between two *n* dimensional vector spaces:

- *L* is invertible.
- L is one-to-one.
- L is onto.