
Math 327
Properties of the Determinant

Theorem 3.1: If A is a matrix, then det(A) = det
(

AT
)

.

Proof: See textbook p. 146

Theorem 3.2: If a matrix B results from matrix A by interchanging two different rows (columns) of A, then det(B) =
−det(A).

Proof Sketch:

Interchanging two rows (or columns) of a matrix interchanges the associated elements in each permutation used to compute
the determinant of A. We claim that the result of interchanging this pair of elements replaces each odd permutation with
an even permutation and vice versa. From this, each permutation that was positive in the original computation of det(A)
becomes negative and each permutation that was negative becomes positive. Therefore, det(B) = −det(A).

To see that the same result holds for interchanging columns, notice that if B is derived from A by interchanging two
columns, then BT arises from AT by interchanging two rows. Then det(BT ) = −det(AT ). However, applying Theorem 3.1,
det(AT ) = det(A) and det(BT ) = det(B). Thus det(B) = −det(A).

Theorem 3.3: If two rows (columns) of A are equal, then det(A) = 0.

Proof:

Suppose A has two equal rows (columns). Let B be the matrix obtained by interchanging the identical rows (columns). Then
B = A. However, using Theorem 3.2, det(B) = −det(A). That is, det(A) = −det(A). Therefore, we must have det(A) = 0.

Theorem 3.4: If A has a row (column) consisting of all zeros, then det(A) = 0.

Proof:

Since an entire row (column) of A has all zeros, each permutation in the computation of det(A) will contain a zero term.
Therefore, every product term is zero. Hence det(A) = 0.

Theorem 3.5: If B is obtained from A by multiplying a row (column) of A by a real number k, then det(B) = kdet(A).

Proof:

Theorem 3.6: If B is obtained from A by adding to each element of the rth row (column) of A, k times the corresponding
element of the sth row (column) of A (with r 6= s) then det(B) = det(A).

Proof: See text.

Note: Theorems 3.2, 3.5, and 3.6 tell us exactly what impact carrying our an elementary operation of type I, II, or III on a
matrix A does to the value of the determinant of A.

Theorem 3.7: If a matrix A is upper (lower) triangular, then det(A) = a11a22 · · · ann. That is, the determinant is equal to
the product of the elements along the main diagonal of A.

Proof Sketch: Notice that, other than the term that comes for choosing the elements along the main diagonal, every other
permutation product drawn from A contains at least one zero term.



Note: Taking Theorem 3.7 together with the previous results that describe the impact performing row operations has on
the value of the determinant of a matrix suggests that one nice way to compute the determinant of a matrix is to use row (or
column) operations to put the matrix into a triangular form, keeping track of how each move changes the determinant, then,
compute the value of the determinant of the simplified matrix, and finally, to find the determinant of the original matrix by
making the appropriate adjustments. This method is called computation via reduction to triangular form.

Example:

Lemma 3.1: If E is an elementary matrix, then det(EA) = det(E)det(A), and det(AE) = det(A)det(E).

Proof Sketch: Let E be an elementary matrix. Notice that det(In) = 1. Then if E is of type I, then det(E) = −1. If E is
of type II, the det(E) = k, and if E is of type III, then det(E) = 1. Combining this with Theorems 3.2, 3.5, and 3.6 above
proves the result (many details have been omitted).

Theorem 3.8: If A is an n× n matrix, then A is nonsingular if and only if det(A) 6= 0.

Proof:

First, suppose that A is nonsingular. Then, by Theorem 2.8, A = E1E2 · · ·En where each Ei is an elementary matrix. Then,
using Lemma 3.1 n times, det(A) = det(E1E2 · · ·En) = det(E1)det(E2) · · · det(En) 6= 0 (as discussed in the sketch of the
proof of Lemma 3.1 above, for each i, det(Ei) 6= 0). Conversely, suppose A is singular. Then, using Theorem 2.10, A is row
equivalent to a matrix B with a row of zeros. Then, by Theorem 3.4, det(B) = 0. Therefore, since A = F1F2 · · ·FℓB, where
each Fi is an elementary matrix, det(A) = det(F1F2 · · ·FℓB) = det(F1)det(F2) · · · det(Fℓ)det(B) = 0.

Corollary 3.1: If A is an n× n matrix, then A~x = ~0 has a nontrivial solution if and only if det(A) = 0.

Theorem 3.9: If A and B are n× n matrices, then det(AB) = det(A)det(B).

Proof: See text p. 153

Corollary 3.2: If A is nonsingular then det
(

A−1
)

= 1
det(A)

Proof:

Let A be a nonsingular matrix. Then A−1 exists and AA−1 = In. Recall that det(In) = 1. Then, using Theorem 3.9,
1 = det(In) = det(AA−1) = det(A)det(A−1), or 1 = det(A)det(A−1). By Theorem 3.8, since A is nonsingular, det(A) 6= 0.
Hence det(A−1) = 1

det(A) .


