Definition: An $m \times n$ matrix A is said to be in **reduced row echelon form** if it satisfies the following properties:

- All zero rows, if there are any, appear at the bottom of the matrix.
- The first non-zero entry (from the left) of a non-zero row is a 1 [This entry is called the **leading one** of its row.]
- For each non-zero row, the leading one appears to the right and below and leading ones in preceding rows.
- If a column contains a leading one, then all other entries in that column are zero.

Notes:

- A matrix in reduced row echelon form looks like a "staircase" of leading ones descending from the upper left corner of the matrix.
- An $m \times n$ matrix that satisfies the first three properties above is said to be in row echelon form.
- By interchanging the roles of rows and columns in the definition given above, we can define the **reduced column** echelon form and the column echelon form of an $m \times n$ matrix.

Examples:

A =	- 1	Ο	Ο	0.	ז ר	1	-3	5	7	2		1	-3	5	7	2		1	-3	0	7	2
	1	0) 0) 1) 0	0 0 0	$\int, B =$	0	0	1	-1	4	C =	0	0	1	$^{-1}$	4	, D =	0	0	1	$^{-1}$	4
	0	0				0	0	0	1	0		0	1	0	0	0		0	0	0	0	0
	. 0	0				0	0	0	0	0		0	0	0	0	0		0	0	0	0	1

Definition: An elementary row (column) operation on a matrix A is any one of the following operations:

- **Type I:** Interchange any two rows (columns).
- **Type II:** Multiply a row (column) by a non-zero number.
- Type III: Add a multiple of one row (column) to another.

Notation: We will use the following notation to clearly identify the row (column) operations performed on a given matrix.

- Type I: $r_i \leftrightarrow r_j \ (c_i \leftrightarrow c_j)$
- Type II: $kr_i \rightarrow r_i \ (kc_i \rightarrow kc_j)$
- Type III: $kr_i + r_j \rightarrow r_j \ (kc_i + c_j \rightarrow c_j)$

Note: When A is the augmented matrix of a system of linear equations, performing elementary row operations on A is equivalent to performing the operations on linear systems defined in Section 1.1.

Definition: An $m \times n$ matrix B is said to be row (column) equivalent to an $m \times n$ matrix A if B can be produced by applying a finite sequence of elementary row (column) operations on A.

Claim: Row equivalence and column equivalence are both equivalence relations on the set of $m \times n$ matrices.

Example:

$$\begin{bmatrix} 1 & 2 & -4 & 7 \\ 2 & -1 & 3 & 5 \\ 3 & 0 & 2 & -6 \end{bmatrix} -2r_1 + r_2 \rightarrow r_2 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & -5 & 11 & -9 \\ 3 & 0 & 2 & -6 \end{bmatrix} -3r_1 + r_3 \rightarrow r_3 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & -5 & 11 & -9 \\ 0 & -6 & 14 & -27 \end{bmatrix} -r_3 + r_2 \rightarrow r_2 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & 1 & -3 & 18 \\ 0 & -6 & 14 & -27 \end{bmatrix}$$

Theorem 2.1: Every non-zero matrix $A = [a_{ij}]$ is row (column) equivalent to a matrix in *row echelon form*. **Proof:** (Later)

Theorem 2.2: Every non-zero matrix $A = [a_{ij}]$ is row (column) equivalent to a matrix in **reduced** row echelon form. **Proof:** (Later)

Example:

Recall:

$$\begin{bmatrix} 1 & 2 & -4 & 7 \\ 2 & -1 & 3 & 5 \\ 3 & 0 & 2 & -6 \end{bmatrix} -2r_1 + r_2 \rightarrow r_2 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & -5 & 11 & -9 \\ 3 & 0 & 2 & -6 \end{bmatrix} -3r_1 + r_3 \rightarrow r_3 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & -5 & 11 & -9 \\ 0 & -6 & 14 & -27 \end{bmatrix} -r_3 + r_2 \rightarrow r_2 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & 1 & -3 & 18 \\ 0 & -6 & 14 & -27 \end{bmatrix}$$

Continuing this example:

$$\begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & 1 & -3 & 18 \\ 0 & -6 & 14 & -27 \end{bmatrix} - 6r_2 + r_3 \rightarrow r_3 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & 1 & -3 & 18 \\ 0 & 0 & -4 & 81 \end{bmatrix} - \frac{1}{4}r_3 \rightarrow r_3 \begin{bmatrix} 1 & 2 & -4 & 7 \\ 0 & 1 & -3 & 18 \\ 0 & 0 & 1 & -\frac{81}{4} \end{bmatrix}$$
$$3r_3 + r_2 \rightarrow r_2 \text{ and } 4r_3 + r_1 \rightarrow r_1 \begin{bmatrix} 1 & 2 & 0 & -74 \\ 0 & 1 & 0 & -\frac{171}{4} \\ 0 & 0 & 1 & -\frac{81}{4} \end{bmatrix} - 2r_2 + r_1 \rightarrow r_1 \begin{bmatrix} 1 & 0 & 0 & \frac{23}{2} \\ 0 & 1 & 0 & -\frac{171}{4} \\ 0 & 0 & 1 & -\frac{81}{4} \end{bmatrix}$$