
Math 327
Elementary Matrices and Inverse Matrices

Definition: An n × n elementary matrix of type I, type II, or type III is a matrix obtained from the identity matrix In
by performing a single elementary row operation (or a single elementary column operation) of type I, II, or III respectively.

Examples:

E1 =





1 0 0
0 0 1
0 1 0



 E2 =





1 0 0
0 1 0
0 0 − 7

4



 E3 =





1 0 −11
0 1 0
0 0 1





Type I (r2 ↔ r3) Type II (− 7

4
r3 → r3) Type III (r1 − 11r3 → r1)

Theorem 2.5: Let A be an m × n matrix. Suppose a single elementary row (column) operation of type I, II, or III is
performed on A, yielding the matrix B. Let E be the elementary matrix obtained from Im (In) by performing the same
elementary row (column) operation. Then B = EA (B = AE).

Proof: Exercise

Examples: Suppose A =





a b c

d e f

g h i



 and that E1, E2, and E3 are as above.

Then E1A =





1 0 0
0 0 1
0 1 0









a b c

d e f

g h i



 =





a b c

g h i

d e f



, E2A =





1 0 0
0 1 0
0 0 − 7

4









a b c

d e f

g h i



 =





a b c

d e f

− 7

4
g − 7

4
h − 7

4
i





E3A =





1 0 −11
0 1 0
0 0 1









a b c

d e f

g h i



 =





a− 11g b− 11h c− 11i
d e f

g h i





Theorem 2.6: If A and B are m× n matrices, then A is row (column) equivalent to B if and only if there are elementary
matrices E1, e2, · · · , Ek such that B = EkEk−1 · · ·E2E1A (B = AE1E2 · · ·Ek−1Ek)

Proof: (row case)

If A is row equivalent to B, then B is the result of applying a finite sequence of elementary row operations to the matrix A.
For i = 1 to k, let Ei be the elementary matrix corresponding to the ith elementary row operation in the sequence. Then,
using Theorem 2.5 k times, we have B = EkEk−1 · · ·E2E1A.
Conversely, suppose that B = EkEk−1 · · ·E2E1A for some sequence of elementary matrices. Then if we start from A and
apply the elementary row operations the correspond to each elementary matrix in order, we will obtain the matrix B. Thus
A and B are row equivalent.
Theorem 2.7 An Elementary Matrix E is nonsingular, and E−1 is an elementary matrix of the same type.

Proof Sketch:

Type I: We claim that the matrix E corresponding to the elementary row operation ri ↔ rj is its own inverse.

Type II: We claim that the inverse of the matrix E corresponding to the elementary row operation cri ↔ rj with c 6= 0 is
the matrix corresponding to the operation 1

c
ri → ri.

Type III: We claim that the inverse of the matrix E corresponding to the elementary row operation cri + rj ↔ rj is the
matrix corresponding to the operation −cri + rj ↔ rj .

Lemma 2.1 Let A be an n× n matrix and let the homogeneous system A~x = ~0 have only the trivial solution ~x = ~0. Then
A is row equivalent to In (that is, the reduced row echelon form of A is In.)

Proof:



Theorem 2.8 A is nonsingular if and only if A is the product of elementary matrices.

Proof:

First, suppose that A is a product of the elementary matrices E1, E2, · · · , Ek. Then A = E1E2 · · ·Ek−1Ek. By Theorem 2.7,
each Ei is non-singular. By Theorem 1.6, the product of two non-singular matrices is non-singular. Hence A is non-singular.

Next, suppose that A is non-singular. Consider the system A~x = ~0. Then A−1A~x = A−1~0 = ~0, so In~x = ~0, or ~x = ~0.
Thus A~x = ~0 has only the trivial solution. Applying Lemma 2.1, A is row equivalent to In. Then there is a sequence of
elementary matrices such that In = EkEk−1 · · ·E2E1A. Then A = (EkEk−1 · · ·E2E1)

−1
= E−1

1
E−1

2
· · ·E−1

k . By Theorem
2.7, the inverse of an elementary matrix is an elementary matrix. Thus A is a product of elementary matrices. 2.

Corollary 2.2 A is non-singular if and only if A is row equivalent to In.

Proof: See text.

Theorem 2.9 The homogeneous system of n linear equations in n unknowns A~x = ~0 has a non-trivial solution if and only
if A is singular.

Summary: The following statements are all equivalent for an n× n matrix A:

• A is non-singular.

• A~x = ~0 has only the trivial solution.

• A is row (column) equivalent to In (i.e. the reduced row echelon form of A is In).

• The linear system A~x = ~b has a unique solution for every n× 1 matrix ~b.

• A is the product of elementary matrices.

Why do we care??

During the proof of Theorem 2.8, we showed that if A is nonsingular, then A = (EkEk−1 · · ·E2E1)
−1

= E−1

1
E−1

2
· · ·E−1

k .

from this, it follows that A−1 = EkEk−1 · · ·E2E1. That is, we can find A−1 by keeping track of the elementary row operations
that are used when putting A into reduced row echelon form. From this, if we start with a partitioned matrix [A|In] and
preform the row operations to put A into reduced row echelon form, we will end up with a partitioned matrix of the form
[

In|A
−1

]

.

Using this method, we can find the inverse of any non-singular n× n matrix A.

Example:


