1. Find all solutions to each of the following systems of linear equations.

(a)
$$\begin{cases} x+y=2\\ 2x-y=10 \end{cases}$$
 (c)
$$\begin{cases} 2x+5y=4\\ -x+y=5\\ 3x-y=-10 \end{cases}$$

(b)
$$\begin{cases} x-4y=6\\ 3x+y=5\\ 2x+3y=1 \end{cases}$$
 (d)
$$\begin{cases} x-3y+z=10\\ 2x+y-z=-3\\ 5x-8y+2z=27 \end{cases}$$

2. Given the homogeneous linear system $\begin{cases} x + 2y - z = 0\\ 3x - 2y + 5z = 0\\ 4x + y - z = 0 \end{cases}$ Determine whether or not this system has any nontrivial solutions.

3. Find all values of a for which the following linear system has solutions: $\begin{cases} x + 2y + z = a^2 \\ x + y + 3z = a \\ 3x + 4y + 7z = 8 \end{cases}$

4. Let
$$A = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 3 \\ 2 & 0 \\ -1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 3 \\ -1 & 2 & 0 \end{bmatrix}$, and $D = \begin{bmatrix} -4 & 2 \\ 3 & 1 \end{bmatrix}$

If possible, compute the following.

(a) $A + B^T$ (c) CA^T (b) AB + D(d) $CB + A^T$

5. For each of the linear systems in problem 1 above:

- (a) Find the coefficient matrix.
- (b) Write the linear system in matrix form.
- (c) Find the augmented matrix for the system.
- 6. Rewrite the following as a linear system in matrix form: $x \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} + y \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + z \begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- 7. Find the incidence matrix for the following combinatorial graph.

8. Suppose that $\vec{v} \cdot \vec{w} = 0$, with $\vec{v} = \begin{bmatrix} 1 \\ x \\ y \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} x \\ -1 \\ 4 \end{bmatrix}$. Find all possible values for x and y.

9. If possible, find a non-trivial solution to the matrix equation $\begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

10. Let $A = [a_{ij}]$ be an $n \times n$ matrix. The **trace** of A, denoted tr(A), is the sum of the entries along the main diagonal of A. That is, $tr(A) = \sum_{i=1}^{n} a_{ii}$. Prove the following:

(a)
$$Tr(A+B) = Tr(B+A)$$
 (b) $Tr(A^T) = Tr(A)$. (c) $Tr(A^TA) \ge 0$

11. Prove each of the following.

- (a) Theorem 1.1a
- (b) Theorem 1.2c
- (c) Theorem 1.3b
- (d) Theorem 1.4d

12. Let $A = \begin{bmatrix} -1 & 0 & 4 \\ 3 & -2 & 2 \\ 1 & -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 2 & 3 \\ 4 & -1 & 3 \end{bmatrix}$. Show that Theorem 1.4c holds for A and B.

13. Give a nontrivial example of each of the following:

- (a) A diagonal matrix
- (b) An upper triangular matrix
- (c) A symmetric matrix
- (d) A skew symmetric matrix
- 14. Show that the product of any two diagonal matrices is a diagonal matrix.
- 15. Show that the sum of any two lower triangular matrices is a lower triangular matrix.
- 16. Prove or Disprove: For any $n \times n$ matrix $A, A^T A = A A^T$
- 17. Let A and B be symmetric matrices. Show that AB is symmetric if and only if AB = BA.
- 18. For each matrix A given, either find A^{-1} or show that A is singular.

(a)
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}$

19. Show that for any $n \times n$ matrix $A, A + A^T$ is symmetric.

20. Let $A = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$

(a) Find A^{-1}

(b) Use A^{-1} to solve the equation $A\vec{x} = \vec{b}$ if: (i) $\vec{b} = \begin{bmatrix} 2\\1 \end{bmatrix}$ (ii) $\vec{b} = \begin{bmatrix} -3\\4 \end{bmatrix}$ (c) Use A^{-1} to solve the equation $A^2 \vec{x} = \vec{b}$ if $\vec{b} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

21. Prove Theorem 1.7

22. Suppose that $f: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

- (a) Find the image of $\vec{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and then graph both \vec{u} and its image
- (b) Find the image of $\vec{v} = \begin{bmatrix} -2\\ 1 \end{bmatrix}$ and then graph both \vec{v} and its image.
- (c) Give a geometrical description of the transformation f given by A above.

23. Let
$$f: R^2 \to R^3$$
 be given by $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 0 \end{bmatrix}$. Determine whether or not $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ or $\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ are in the range of f .

(a) Find A if $f(\vec{u}) = A\vec{u}$ defines rotation 45° counterclockwise in the plane. 24.(b) Find the image of $\vec{v} = \begin{vmatrix} 3 \\ 3 \end{vmatrix}$ under f. Then graph both \vec{v} and $f(\vec{v})$.