Math 327 Exam 1 - Practice Problem Solutions

1. Find all solutions to each of the following systems of linear equations.

$$
(a) \begin{cases} x+y=2\\ 2x-y=10 \end{cases}
$$

Adding these equations gives $3x = 12$ so $x = 4$ Then $4 + y = 2$, so $y = -2$ Hence the solution is $x = 4, y = -2$.

(b)
$$
\begin{cases} x - 4y = 6 \\ 3x + y = 5 \\ 2x + 3y = 1 \end{cases}
$$

Adding the first equation to 4 times the second equation $(12x + 4y = 20)$ gives $13x = 26$ or $x = 2$. Then $2 - 4y = 6$, so $-4y = -4$. Thus $y = -1$. Since there are three equations, we must check this solution in the

third equation.

 $2(2) + 3(-1) = 4 - 3 = 1$. Since this checks, then the solution is $x = 2, y = -1$.

(c)
$$
\begin{cases} 2x + 5y = 4 \\ -x + y = 5 \\ 3x - y = -10 \end{cases}
$$

Adding the first equation to twice the second equation $(-2x + 2y = 20)$ gives $7y = 14$ or $y = 2$.

Then $2x + 10 = 4$, so $2x = -6$. Thus $x = -3$. Since there are three equations, we must check this solution in the third equation.

 $3(-3) - (2) = -9 - 2 = -11 \neq -10$. Since this does not check, then there is no solution.

(d)
$$
\begin{cases} x - 3y + z = 10 \\ 2x + y - z = -3 \\ 5x - 8y + 2z = 27 \end{cases}
$$

Adding the first equation to the second equation gives $3x-2y=7$. Adding twice the second equation to the third equation gives $9x - 6y = 21$.

Notice that three times the first of these new equations gives $9x - 6y = 21$. Therefore, we see that this line is common to each of the three planes represented by the original three equations. Therefore, this system of equations has infinitely many solutions. Solving for x in our two variable equation gives $3x = 7 + 2y$ or $x = \frac{2}{3}7 + \frac{7}{3}$. Using the original first equation, $z = 10 + 3y - x$, or, substituting, $z = 10 + 3y - \frac{2}{3}y - \frac{7}{3}$. Then $z = \frac{7}{3}y + \frac{23}{3}$.

Hence, the solutions to this system are all points of the form: $(\frac{2}{3}t + \frac{7}{3}, t, \frac{7}{3}t + \frac{23}{3})$.

2. Given the homogeneous linear system
$$
\begin{cases} x + 2y - z = 0 \\ 3x - 2y + 5z = 0 \\ 4x + y - z = 0 \end{cases}
$$

Determine whether or not this system has any nontrivial solutions.

Adding the first equation to the second equation gives $4x+4z = 0$ or $x+z = 0$, so $z = -x$. Adding the second equation to twice the third equation gives $11x + 3z = 0$. Then, substituting $z = -x$ gives $11x - 3x = 0$, so $8x = 0$. Thus $x = 0$ and $z = 0$. Finally, if $x = 0$ and $z = 0$, then the original first equation becomes $2y = 0$, so $y = 0$. Therefore, this homogeneous system does not have any non-trivial solutions.

3. Find all values of a for which the following linear system has solutions: $\sqrt{ }$ ^J \mathcal{L} $x + 2y + z = a^2$ $x+y+3z=a$ $3x + 4y + 7z = 8$

We begin by subtracting the first and second equation. This gives $y - 2z = a^2 - a$. Next, we subtract 3 times the first equation from equation 3. This gives $y - 2z = 8 - 3a$. If we subtract these two equations from each other, we get $0 = a^2 - a + 3a - 8$ or $a^2 + 2a - 8 = 0$. This factors to give $(a + 4)(a - 2) = 0$. Therefore, in order for this system to be satisfiable, we must have $a = -4$ or $a = 2$.

4. Let
$$
A = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 0 & 5 \end{bmatrix}
$$
, $B = \begin{bmatrix} -1 & 3 \\ 2 & 0 \\ -1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 3 \\ -1 & 2 & 0 \end{bmatrix}$, and $D = \begin{bmatrix} -4 & 2 \\ 3 & 1 \end{bmatrix}$

If possible, compute the following.

(a)
$$
A + B^{T}
$$

\n $A + B^{T} = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 0 & 5 \end{bmatrix} + \begin{bmatrix} -1 & 2 & -1 \\ 3 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 \\ 6 & 0 & 9 \end{bmatrix}$
\n(b) $AB + D$
\n $AB + D = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 2 & 0 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} -4 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -8 & 22 \\ -8 & 29 \end{bmatrix} + \begin{bmatrix} -4 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -12 & 24 \\ -5 & 30 \end{bmatrix}$
\n(c) CA^{T}
\n $CA^{T} = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 3 \\ -1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 0 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 18 & 23 \\ 15 & 21 \\ -4 & -3 \end{bmatrix}$
\n(d) $CB + A^{T}$
\n $CB + A^{T} = \begin{bmatrix} -1 & 3 \\ 2 & 0 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 3 \\ -1 & 2 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -1 & 0 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} -5 & 19 \\ -3 & 18 \\ 5 & -3 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -1 & 0 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} -3 & 22 \\ -4 & 18 \\ 9 & 2 \end{bmatrix}$

1 $\overline{1}$

- 5. For each of the linear systems in problem 1 above:
	- (a) Find the coefficient matrix.

$$
A_1 = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & -4 \\ 3 & 1 \\ 2 & 3 \end{bmatrix}, A_3 = \begin{bmatrix} 2 & 5 \\ -1 & 1 \\ 3 & -1 \end{bmatrix}, \text{ and } A_4 = \begin{bmatrix} 1 & -3 & 1 \\ 2 & 1 & -1 \\ 5 & -8 & 2 \end{bmatrix}
$$

(b) Write the linear system in matrix form.

$$
A_1 = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \end{bmatrix}
$$

\n
$$
A_2 = \begin{bmatrix} 1 & -4 \\ 3 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 1 \end{bmatrix}
$$

\n
$$
A_3 = \begin{bmatrix} 2 & 5 \\ -1 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ -10 \end{bmatrix}
$$

\n
$$
A_4 = \begin{bmatrix} 1 & -3 & 1 \\ 2 & 1 & -1 \\ 5 & -8 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ -3 \\ 27 \end{bmatrix}
$$

(c) Find the augmented matrix for the system.

$$
\begin{bmatrix} 1 & 1 & 2 \ 2 & -1 & 10 \end{bmatrix}, \begin{bmatrix} 1 & -4 & 6 \ 3 & 1 & 5 \ 2 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 5 & 4 \ -1 & 1 & 5 \ 3 & -1 & -10 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 & -3 & 1 & 10 \ 2 & 1 & -1 & -3 \ 5 & -8 & 2 & 27 \end{bmatrix}
$$

6. Rewrite the following as a linear system in matrix form: x \lceil $\overline{1}$ −1 θ 3 1 $+ y$ \lceil $\overline{1}$ 2 1 2 1 $+ z$ $\sqrt{ }$ $\overline{}$ 4 3 −1 1 \vert = \lceil $\overline{1}$ θ θ 0 1 $\overline{1}$

 \lceil $\overline{1}$ −1 2 4 0 1 3 $3 \t 2 \t -1$ 1 \mathbf{I} $\sqrt{ }$ $\overline{1}$ \boldsymbol{x} \hat{y} z 1 \vert = $\sqrt{ }$ $\overline{1}$ θ θ θ 1 \mathbf{I} 7. Find the incidence matrix for the following combinatorial graph.

Listing the vertices the graph alphabetically, we obtain the following incidence matrix:

- $\sqrt{ }$ 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 $\lceil x_1 \rceil$ $\overline{x_2}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ θ 1
- 8. Suppose that $\vec{v} \cdot \vec{w} = 0$, with $\vec{v} =$ \lceil $\overline{1}$ 1 \boldsymbol{x} \hat{y} 1 and $\vec{w} =$ \lceil $\overline{1}$ \boldsymbol{x} −1 4 1 . Find all possible values for x and y .

Since $\vec{v} \cdot \vec{w} = 0$, $(1)(x) + (x)(-1) + (y)(4) = x - x + 4y = 4y = 0$. Then $y = 0$. Notice that x can be any real number.

9. If Possible, find a non-trivial solution to the matrix equation $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ $3 -4$ $\lceil x_1 \rceil$ $\overline{x_2}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 1

Taking the product, we obtain the following system: $\begin{cases} x_1 + 2x_2 = 0 \\ 2x_1 + 4x_2 = 0 \end{cases}$ $3x_1 - 4x_2 = 0$

Twice the first equation is: $2x_1 + 4x_2 = 0$, so adding this to the second equation gives $5x_1 = 0$, so $x_1 = 0$. But then $0 + 2x_2 = 0$, so $x_2 = 0$. Therefore, this homogeneous system has no non-trivial solutions.

- 10. Let $A = [a_{ij}]$ be an $n \times n$ matrix. The **trace** of A, denoted $tr(A)$, is the sum of the entries along the main diagonal of A. That is, $tr(A) = \sum_{n=1}^{\infty}$ $i=1$ a_{ii} . Prove the following:
	- (a) $Tr(A + B) = Tr(B + A)$

Let $A = [a_{ij}]$ and $B = [b_{ij}]$. Then $A + B = [a_{ij} + b_{ij}]$ while $B + A = [b_{ij} + a_{ij}]$. Therefore, applying the definition of trace, $Tr(A+B) = \sum_{n=1}^{n}$ $i=1$ $(a_{ii} + b_{ii}) = \sum_{n=1}^{n}$ $i=1$ $(b_{ii} + a_{ii}) = Tr(B + A)$

(b) $Tr(A^T) = Tr(A)$.

Let
$$
A = [a_{ij}]
$$
. Then $Tr(A) = \sum_{i=1}^{n} (a_{ii})$. Similarly, $A^{T} = [a_{ji}]$, so $Tr(A^{T}) = \sum_{i=1}^{n} (a_{ii})$. Hence $Tr(A) = Tr(A^{T})$.

(c) $Tr(A^T A) \geq 0$

Let $A = [a_{ij}]$, let $A^T = B = [b_{ij}]$, and let $A^TA = C = [c_{ij}]$. Notice that for each (i, j) , $b_{ij} = a_{ji}$. By definition, $c_{ij} = \sum_{i=1}^{n}$ $k=1$ $b_{ik}a_{kj} = \sum_{k=1}^{n}$ $k=1$ $a_{ki}a_{kj}$. In particular, when $i = j, c_{ii} = \sum_{i=1}^{n}$ $k=1$ $a_{ki}a_{ki} = \sum_{i=1}^{n}$ $k=1$ $(a_{ki})^2$. Therefore, $Tr(A^T A) = \sum_{n=1}^{\infty}$ $i=1$ $c_{ii} = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} \right)$ $(a_{ki})^2$ Since each $(a_{ik})^2 \ge 0$, we must have $Tr(A^T A) \ge 0$.

11. Prove each of the following.

(a) **Theorem 1.1a:** Let A and B be $m \times n$ matrices. Then $B + A = A + B$.

Proof:

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices. Let $A + B = C = [c_{ij}]$ and let $B + A = D = [d_{ij}]$. By definition of matrix addition, for each pair (i, j) , $c_{ij} = a_{ij} + b_{ij}$ while $d_{ij} = b_{ij} + a_{ij}$. However, since addition of real numbers is commutative, $a_{ij} + b_{ij} = b_{ij} + a_{ij}$. Therefore, $c_{ij} = d_{ij}$. Thus $C = D$. Therefore, $A + B = B + A$. \Box .

(b) **Theorem 1.2c:** If A, B, and C are matrices of appropriate sizes, then $C(A + B) = CA + CB$.

Proof:

Let $A = [a_{ij}]$ be an $n \times p$ matrix, $B = [b_{ij}]$ an $n \times p$ matrix, and $C = [c_{ij}]$ an $m \times n$ matrix. Furthermore, let $A + B = D = [d_{ij}]$, let $C(A + B) = CD = E = [e_{ij}]$, let $CA = F = [f_{ij}]$, and let $CB = G = [g_{ij}]$. By definition of matrix addition, for each pair (i, j) , $d_{ij} = a_{ij} + b_{ij}$.

Using the definition of matrix multiplication, $f_{ij} = \sum_{i=1}^{n} c_{ik} a_{kj}$ and $g_{ij} = \sum_{i=1}^{n} c_{ik} b_{kj}$. Similarly, $e_{ij} = \sum_{k=1}^{n} c_{ik} d_{kj}$ $\sum_{k=1}^{n} c_{ik}(a_{kj} + b_{kj}) = \sum_{k=1}^{n} c_{ik}a_{kj} + c_{ik}b_{kj} = \sum_{k=1}^{n} c_{ik}a_{kj} + \sum_{k=1}^{n} c_{ik}b_{kj}$ (using the property 1 of summations). But then $e_{ij} = f_{ij} + g_{ij}$. Therefore, $E = F + G$. That is, $C(A + B) = CA + CB$. \Box .

(c) **Theorem 1.3b:** Let r and s be real numbers and A be an $m \times n$ matrix. then $(r + s)A = rA + sA$.

Proof:

Let $A = [a_{ij}]$ and let $(r + s)A = B = [b_{ij}]$. By definition of scalar multiplication, for each pair (i, j) , b_{ij} $(r + s)a_{ij} = ra_{ij} + sa_{ij}$ (using the distributive property of real numbers). Since $rA = [ra_{ij}]$ and $sA = [sa_{ij}]$, it follows that $B = rA + sA$. That is, $(r + s)A = rA + sA$. \Box .

(d) **Theorem 1.4d:** Let r be a scalar and A an $m \times n$ matrix. Then $(rA)^T = rA^T$. Proof:

Let $A = [a_{ij}]$, let $rA^T = B = [b_{ij}]$ and let $(rA)^T = C = [c_{ij}]$. Notice that by definition of matrix transpose and scalar multiplication, for each pair (i, j) , $b_{ij} = ra_{ji} = c_{ij}$. it follows that $(rA)^{T}rA^{T}$. \Box .

> −7 3 1 $\begin{bmatrix} -1 & 3 & 1 \\ 10 & 6 & -1 \end{bmatrix}$

12. Let
$$
A = \begin{bmatrix} -1 & 0 & 4 \ 3 & -2 & 2 \ 1 & -1 & 0 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 1 & 3 & 2 \ -1 & 2 & 3 \ 4 & -1 & 3 \end{bmatrix}$. Show that Theorem 1.4c holds for A and B.
\nNotice that $AB = \begin{bmatrix} -1 & 0 & 4 \ 3 & -2 & 2 \ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \ -1 & 2 & 3 \ 4 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 15 & -7 & 10 \ -3 & 7 & -6 \ 2 & 1 & -1 \end{bmatrix}$
\nThen $(AB)^T = \begin{bmatrix} 15 & -3 & 2 \ -7 & 7 & 1 \ 10 & -6 & -1 \end{bmatrix}$
\nOn the other hand, $A^T = \begin{bmatrix} -1 & 3 & 1 \ 0 & -2 & -1 \ 4 & -2 & 0 \end{bmatrix}$ and $B^T = \begin{bmatrix} 1 & -1 & 4 \ 3 & 2 & -1 \ 2 & 3 & 3 \end{bmatrix}$

 $0 \t -2 \t -1$ $\begin{array}{ccc} 0 & -2 & -1 \\ 4 & 2 & 0 \end{array}$ =

13. Give a nontrivial example of each of the following:

 $3 \t 2 \t -1$ $\begin{array}{cc} 3 & 2 & -1 \\ 2 & 3 & 3 \end{array}$

(a) A diagonal matrix

Hence $B^T A^T =$

 $\sqrt{ }$ $\overline{1}$ 5 0 0 $0 -3 0$ 0 0 1 1 $\overline{1}$ (b) An upper triangular matrix

(c) A symmetric matrix

(d) A skew symmetric matrix

14. Show that the product of any two diagonal matrices is a diagonal matrix.

Proof:

Let A and B be $n \times n$ diagonal matrices. Suppose that $A = [a_{ij}]$ and $B = [b_{ij}]$. Then, by definition of diagonal, whenever $i \neq j$, we have $a_{ij} = 0$ and $b_{ij} = 0$. Let $AB = C = [c_{ij}]$. By definition of matrix multiplication, $c_{ij} = \sum_{i}^{n} a_{ik} b_{kj}$. Notice that in order for the product $a_{ik}b_{kj} \neq 0$, we must have $i = k = j$. Then, whenever $i \neq j$, $c_{ij} = 0$ and when $i = j$, $c_{ii} = a_{ii}b_{ii}$. Hence $C = AB$ is a diagonal matrix.

15. Show that the sum of any two lower triangular matrices is a lower triangular matrix.

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be lower triangular matrices. Let $A + B = C = [c_{ij}]$. Then for each pair (i, j) , $c_{ij} = a_{ij} + b_{ij}$. Now, since A and B are lower triangular, $a_{ij} = 0$ and $b_{ij} = 0$ whenever $i < j$. But then, whenever $i < j$, $a_{ij} + b_{ij} = 0 + 0 = 0$. Hence $A + B$ is also lower triangular.

16. Prove or Disprove: For any $n \times n$ matrix $A, A^T A = A A^T$

This statement is false. To see this, let $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$ $3 -1$. Then $A^T = \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix}$ $2 -1$. Therefore, $AA^T = \begin{bmatrix} 1 & 2 \ 2 & 2 \end{bmatrix}$ 3 −1 $\begin{bmatrix} 1 & 3 \end{bmatrix}$ 2 -1 $\begin{bmatrix} 5 & 1 \\ 1 & 10 \end{bmatrix}$ while $A^T A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ 2 -1 $\begin{bmatrix} 1 & 2 \end{bmatrix}$ 3 −1 $\bigg] = \bigg[\begin{array}{cc} 10 & -1 \\ -1 & 5 \end{array} \bigg].$

17. Let A and B be symmetric matrices [I forgot to include this necessary hypothesis on the original handout.]. Show that AB is symmetric if and only if $AB = BA$.

Proof:

First, suppose that A and B are symmetric matrices. Consider transpose of the product AB . By Theorem 1.4c, $(AB)^T = B^T A^T$. Then, since A and B are symmetric, $A^T = A$ and $B^T = B$, we have $(AB)^T = B^T A^T = BA$. Given this, if we suppose that AB is symmetric, then $(AB)^T = AB$. But then we have $AB = (AB)^T = B^T A^T = BA$, so $AB = BA$. Conversely, if we suppose that $AB = BA$, then we have that $(AB)^{T} = B^{T}A^{T} = BA = AB$, hence $(AB)^{T} = AB$. Thus AB is symmetric.

18. For each matrix A given, either find A^{-1} or show that A is singular.

- (a) $A = \begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}$
	- Suppose A^{-1} exists. Let $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $\begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Multiplying this out, we get the equations: $\begin{cases} 3a - c = 1 \\ 2a + 5c = 0 \end{cases}$ and $\begin{cases} 3b - d = 0 \\ 2b + 5d = 0 \end{cases}$ $2b + 5d = 1$

Adding five times the first equations to the second equations gives: $17a = 5$ and $17b = 1$. Then $a = \frac{5}{17}$ and $b = \frac{1}{17}$. Using these, $\frac{15}{17} - c = 1$, so $c = \frac{15}{17} - 1 = -\frac{2}{17}$, and $\frac{3}{17} - d = 0$, so $d = \frac{3}{17}$. Hence $A^{-1} = \begin{bmatrix} \frac{5}{17} & \frac{1}{17} \\ \frac{5}{17} & \frac{1}{3} \end{bmatrix}$ $\frac{5}{17}$ $\frac{1}{17}$
- $\frac{2}{17}$ $\frac{3}{17}$

(b) $A = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}$

Suppose A^{-1} exists. Let $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $\begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Multiplying this out, we get the equations: $\begin{cases} 2a - c = 1 \\ -4a + 2c = 0 \end{cases}$ and $\begin{cases} 2b - d = 0 \\ -4b + 2d = 0 \end{cases}$ $-4b + 2d = 1$

If we add twice the first equation to the second equation in each pair, we get $0 = 2$ and $0 = 1$, which is impossible, so A^{-1} does not exist. Hence A is singular.

19. Show that for any $n \times n$ matrix $A, A + A^T$ is symmetric.

Let $A = [a_{ij}]$, let $A^T = B = [b_{ij}]$, and let $A + A^T = C = [c_{ij}]$. Notice that for each (i, j) , $b_{ij} = a_{ji}$. By definition, for any pair (i, j) , $c_{ij} = a_{ij} + b_{ij} = a_{ij} + a_{ji}$. Therefore, $c_{ji} = a_{ji} + b_{ji} = a_{ji} + a_{ij}$. Thus $c_{ij} = c_{ji}$. Therefore, $(A + A^T)^T = A + A^T$. \Box .

A slightly more clever way to do this proof is to note that, using the second property of the transpose operation, $(A + A^T)^T = A^T + (A^T)^T$, which by the first property of the transpose operation equals $A^T + A$, which by commutativity of addition is just $A + A^T$. Hence $A + A^T$ is symmetric.

20. Let $A = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$

(a) Find A^{-1}

Suppose A^{-1} exists. Let $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $\begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Multiplying this out, we get the equations: $\begin{cases} 2a + c = 1 \\ -3a + 4c = 0 \end{cases}$ and $\begin{cases} 2b + d = 0 \\ -3b + 4d = 0 \end{cases}$ $-3b + 4d = 1$

Adding -4 times the first equations to the second equations gives: $-11a = -4$ and $-11b = 1$. Then $a = \frac{4}{11}$ and $b = -\frac{1}{11}.$ Using these, $\frac{8}{11} + c = 1$, so $c = 1 - \frac{8}{11} = \frac{3}{11}$, and $-\frac{2}{17} + d = 0$, so $d = \frac{2}{11}$. Hence $A^{-1} = \begin{bmatrix} \frac{4}{17} & -\frac{1}{11} \\ \frac{3}{11} & \frac{2}{11} \end{bmatrix}$

(b) Use A^{-1} to solve the equation $A\vec{x} = \vec{b}$ if: (i) $\vec{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 1 $\begin{bmatrix} \text{iii} \\ \text{iv} \end{bmatrix} \vec{b} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ 4 1

(i) Recall that if $A\vec{x} = \vec{b}$, then $\vec{x} = A^{-1}\vec{b} = \begin{bmatrix} \frac{4}{11} & -\frac{1}{11} \\ \frac{3}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\bigg] = \left[\begin{array}{c} \frac{7}{11} \\ \frac{8}{11} \end{array} \right].$ (ii) Recall that if $A\vec{x} = \vec{b}$, then $\vec{x} = A^{-1}\vec{b} = \begin{bmatrix} \frac{4}{11} & -\frac{1}{11} \\ \frac{3}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ $=\begin{bmatrix} -\frac{16}{11} \end{bmatrix}$ $-\frac{16}{11}$
 $-\frac{1}{11}$

(c) Use A^{-1} to solve the equation $A^2\vec{x} = \vec{b}$ if $\vec{b} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ 2

If
$$
A^2 \vec{x} = \vec{b}
$$
, then $\vec{x} = A^{-1}A^{-1}\vec{b} = \begin{bmatrix} \frac{4}{17} & -\frac{1}{11} \\ \frac{3}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} \frac{4}{17} & -\frac{1}{11} \\ \frac{3}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{4}{17} & -\frac{1}{11} \\ \frac{3}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} -\frac{6}{11} \\ \frac{1}{11} & \frac{1}{11} \end{bmatrix} = \begin{bmatrix} -\frac{25}{121} \\ -\frac{16}{121} \end{bmatrix}$

1

21. Prove Theorem 1.7

Theorem 1.7: If A is an $n \times n$ nonsingular matrix, then A^{-1} is nonsingular and $(A^{-1})^{-1} = A$.

Proof:

Let A be a nonsingular matrix. Then there is an inverse matrix A^{-1} so that $AA^{-1} = I_n$. Now, by definition, in order for A^{-1} to be nonsingular, there must be a matrix B such that $A^{-1}B = BA^{-1} = I_n$. Since A satisfies this property, and since, by Theorem 1.5, the inverse of a matrix is unique whenever it exists, we must have $(A^{-1})^{-1} = A$. \Box .

- 22. Suppose that $f: R^2 \to R^2$ is defined by $f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ 1
	- (a) Find the image of $\vec{u} = \begin{bmatrix} 3 \end{bmatrix}$ −1 and then graph both \vec{u} and its image $f(\vec{u}) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ $= \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ -3 .

See graph below.

(b) Find the image of $\vec{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ 1 and then graph both \vec{v} and its image.

(c) Give a geometrical description of the transformation f given by A above.

In general, $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ $\Big] = \Big[\begin{array}{c} -y \\ -y \end{array} \Big]$ $-x$. This can be thought of geometrically as first reflecting across the line $y = x$ and then reflecting about the origin.

23. Let
$$
f: R^2 \to R^3
$$
 be given by $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 0 \end{bmatrix}$. Determine whether or not $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ or $\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ are in the range of f .

First, suppose that $\vec{v} =$ $\sqrt{ }$ $\overline{1}$ 1 2 3 1 is in the range of f . Then for some pair (x, y) , we must have $\sqrt{ }$ $\overline{1}$ 1 2 −1 0 1 0 1 $\overline{1}$ $\lceil x \rceil$ \hat{y} $\Big] =$ \lceil $\overline{1}$ 1 2 3 1 $\vert \cdot$

From this, we must have $\sqrt{ }$ J \mathcal{L} $x + 2y = 1$ $-x=2$ $x=3$ Since we cannot have both $x = -2$ and $x = 3$, this is impossible, so we know that $\vec{v} =$ $\sqrt{ }$ $\overline{1}$ 1 2 3 1 is **not** in the range of f .

Next, suppose that $\vec{v} =$ $\sqrt{ }$ $\overline{1}$ 0 1 2 1 is in the range of f . Then for some pair (x, y) , we must have $\sqrt{ }$ $\overline{1}$ 1 2 −1 0 1 0 1 $\overline{1}$ $\lceil x \rceil$ \hat{y} $\Big] =$ \lceil $\overline{1}$ 0 1 2 1 $\vert \cdot$

From this, we must have $\sqrt{ }$ ^J \mathcal{L} $x + 2y = 0$ $-x=1$ $x = 2$ Since we cannot have both $x = -1$ and $x = 2$, this is also impossible, so we know that $\vec{v} =$ \lceil $\overline{1}$ 1 2 3 1 is **not** in the range of f .

24. (a) Find A if $f(\vec{u}) = A\vec{u}$ defines rotation 45° counterclockwise in the plane.

Recall that a rotation in the plane is defined by $A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$ $\sin \phi \quad \cos \phi$. Here, we have $\phi = 45^{\circ}$, so $A =$ $\left[\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{array}\right]$ $\frac{2}{\sqrt{2}}$ $\frac{2}{\sqrt{2}}$ $\frac{\sqrt{2}}{2}$ 1 .

(b) Find the image of $\vec{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 3 under f. Then graph both \vec{v} and $f(\vec{v})$.

$$
f(\vec{v}) = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3\sqrt{2} \end{bmatrix}.
$$

