Math 327
Exam 1 - Practice Problem Solutions

1. Find all solutions to each of the following systems of linear equations.

r+y=2
(a) { 20 —y =10
Adding these equations gives 3z = 12 so x = 4
Then 4+4+y=2,s0y=—-2

Hence the solution is x = 4,y = —2.
r—4y =6
(b) 3r+y=5
20+ 3y =1

Adding the first equation to 4 times the second equation (12x + 4y = 20) gives 13z = 26 or x = 2.

Then 2 — 4y = 6, so —4y = —4. Thus y = —1. Since there are three equations, we must check this solution in the
third equation.

2(2) +3(—1) =4 — 3 = 1. Since this checks, then the solution is z = 2,y = —1.

2x 4+ by =4
() ¢ —z+y=5
3z —y=-—10

Adding the first equation to twice the second equation (—2x + 2y = 20) gives Ty = 14 or y = 2.

Then 2z + 10 = 4, so 2x = —6. Thus x = —3. Since there are three equations, we must check this solution in the
third equation.

3(=3) = (2) = =9 — 2= —11 # —10. Since this does not check, then there is no solution.

r—3y+2z=10
(d) 2r4+y—2z=-3
5r — 8y + 22 = 27

Adding the first equation to the second equation gives 3x — 2y = 7. Adding twice the second equation to the third
equation gives 9z — 6y = 21.

Notice that three times the first of these new equations gives 9z — 6y = 21. Therefore, we see that this line is
common to each of the three planes represented by the original three equations. Therefore, this system of equations
has infinitely many solutions. Solving for = in our two variable equation gives 3z = 7+ 2y or x = %7 + % Using
the original first equation, z = 10 + 3y — x, or, substituting, z = 10 + 3y — %y — % Then z = %y + 23—3

Hence, the solutions to this system are all points of the form: (%t + It Tt + %)

3073
r+2y—2z=0
2. Given the homogeneous linear system ¢ 3z — 2y + 5z =10
dx+y—2z=0

Determine whether or not this system has any nontrivial solutions.

Adding the first equation to the second equation gives 4x+4z = 0 or z+ 2z = 0, so z = —z. Adding the second equation
to twice the third equation gives 11z 4+ 3z = 0. Then, substituting z = —x gives 112 — 32z =0, so 8t = 0. Thus z =0
and z = 0. Finally, if x = 0 and z = 0, then the original first equation becomes 2y = 0, so y = 0. Therefore, this
homogeneous system does not have any non-trivial solutions.

x4+ 2+ 2z=a?
3. Find all values of a for which the following linear system has solutions: r+y+3z=a
3r+4y+T72=28

We begin by subtracting the first and second equation. This gives y — 2z = a® — a. Next, we subtract 3 times the
first equation from equation 3. This gives y — 2z = 8 — 3a. If we subtract these two equations from each other, we get
0=a®?—a+3a—8ora®+2a—8=0. This factors to give (a + 4)(a — 2) = 0. Therefore, in order for this system to
be satisfiable, we must have a = —4 or a = 2.
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If possible, compute the following.

(a) A+ BT
2 -1 4 -1 2 -1 11 3
T _ _
A+B[3 0 5]*{3 0 4]{609}
(b) AB+ D
2 -1 4 -13 —4 2 -8 22 —4 2 —12 24
AB+D:{3 0 5} 2 +[3 1}:[—8 29}4{3 1]:[—5 30}
(c) CAT
1 0 4 2 3 18 23
CAT = 2 1 3 -1 0| =] 1 21
-1 2 0 4 5 -4 -3
(d) CB+ AT
-1 3 1 0 4 2 3 -5 19 2 3 -3 22
CB+AT=] 2 0 2 1 3|+|-10|=|-3 18|+|-10|=|-4 18
-1 4 -1 2 0 4 5 5 -3 4 5 9 2
5. For each of the linear systems in problem 1 above:
(a) Find the coefficient matrix.
11 1 —4 2 5 1 -3 1
A1:|:2 _1:|,A2: 3 1 7143: -1 1 ,andA4: 2 1 -1
2 3 3 -1 5 —8 2
(b) Write the linear system in matrix form.
1 1 T 2
w=la N[0 ]-10]
[1 —4 6
Ay= 1|3 1 [ v } = |5
2 3 4 1
[ 2 5 4
As=| -1 1 [ * } = 5
L -10
[1 -3 1 T 10
Ag=|2 1 -1 y | =1 -3
| 5 -8 2 z 27
(c¢) Find the augmented matrix for the system.
1 1 9 1 —4|6 2 5 4 1 -3 1 10
[21|10}, 3 1|51, -1 1 5 ,and | 21 —11]-3
2 3|1 3 —-1]-10 5 —8 2 |27
-1 2 4 0
6. Rewrite the following as a linear system in matrix form: x 0 +y | 1| +=2 3 =10
3 2 -1 0
-1 2 4 x 0
0o 1 3 y =10



7.

10.

Find the incidence matrix for the following combinatorial graph.

b

C

Listing the vertices the graph alphabetically, we obtain the following incidence matrix:

0 00 11

0 0 1 1

01010 {wl]—{o}

1110 1 |L7* 0

10 01 0
1 T

Suppose that v- W =0, withv=| = | and W= | —1 |. Find all possible values for z and y.

Y 4

Since v-w =0, (1)(z) + (x)(—1) + (y)(4) = v —x + 4y = 4y = 0. Then y = 0. Notice that = can be any real number.

If Possible, find a non-trivial solution to the matrix equation [ L2 ] [ 1 } = [ 0 ]

3 —4 T2 0
Taking the product, we obtain the following system: T+ 282 =0
3331 - 43’52 =0

Twice the first equation is: 2x; + 4x5 = 0, so adding this to the second equation gives 5xy = 0, so 1 = 0. But then
0+ 2z =0, so o = 0. Therefore, this homogeneous system has no non-trivial solutions.
Let A = [a;;] be an n x n matrix. The trace of A, denoted tr(A), is the sum of the entries along the main diagonal of

A. That is, tr(A) = Z a;;. Prove the following:
i=1

(a) Tr(A+ B)=Tr(B+ A)

Therefore, applying the definition of trace, Tr(A + B) = Z (aii + bi;) = Z (bii + a;) =Tr(B+ A)
i=1 i=1

(b) Tr(AT) = Tr(A).

Let A = [a;j]. Then Tr(A Z ai;). Similarly, AT = [a;;], so Tr(AT) = Z (a;;). Hence Tr(A) = Tr(AT).
i=1

i=1

(c) Tr(ATA) >0

Let A = [a;;], let AT = B = [b;;], and let AT A = C = [¢;;]. Notice that for each (i,7), b;j = aji.
By definition, ¢;; = Z birar; = Zakiakj. In particular, when ¢ = j, ¢;; = Zama;ﬂ = Z a;”-)z.
k=1 k=1
Therefore, T'r ATA Zc“ = Z <Z(a’”)2>
=1 \k=1

Since each (a;x)* > 0, we must have Tr(ATA) > 0.



11. Prove each of the following.
(a) Theorem 1.1a: Let A and B be m x n matrices. Then B+ A = A + B.
Proof:

Let A = [a;;] and B = [b;;] be m x n matrices. Let A+ B = C = [¢;;] and let B+ A = D = [d;;]. By definition of
matrix addition, for each pair (i, 7), ¢;j = a;; + b;; while d;; = b;; + a;;. However, since addition of real numbers
is commutative, a;; + b;; = b;j + a;;. Therefore, ¢;; = d;;. Thus C = D. Therefore, A+ B =B+ A. O.

(b) Theorem 1.2c: If A, B, and C are matrices of appropriate sizes, then C(A+ B) = CA+ CB.
Proof:

Let A = [a;5] be an n x p matrix, B = [b;;] an n X p matrix, and C' = [¢;;] an m x n matrix. Furthermore, let
A+B =D= [dij]7 let C(A+B) =CD=FE= [Bij], let CA=F = [fij]7 and let CB =G = [923] By definition of
matrix addition, for each pair (¢, ), dij = ai; + bi;.

n n
Using the definition of matrix multiplication, f;; = Z Cikar; and g;; = Z cikbrj. Similarly, e;; = Zzzl Cirdy; =
k=1 k=1
Yopey Cik(arj + big) = D p_q Cikakj + Cikbrj = > p_; CikGkj + Y p—q Cikbr; (using the property 1 of summations).
But then e;; = fi; + ¢i;. Therefore, E = F + G. That is, C(A+ B)=CA+ CB. O.

(c) Theorem 1.3b: Let r and s be real numbers and A be an m x n matrix. then (r + s)A =rA + sA.
Proof:

Let A = [a;;] and let (r + s)A = B = [b;;]. By definition of scalar multiplication, for each pair (i,7), b;; =
(r+ s)a;; = ra;; + sa;; (using the distributive property of real numbers). Since rA = [ra;;] and sA = [sa;;], it
follows that B =rA 4+ sA. That is, (r+s)A=rA+ sA. O.

(d) Theorem 1.4d: Let r be a scalar and A an m x n matrix. Then (r4)7 = rAT.
Proof:

Let A = [ay], let rAT = B = [b;;] and let (rA)” = C = [¢;;]. Notice that by definition of matrix transpose and
scalar multiplication, for each pair (4,7), bjj = raj; = c;j. it follows that (rA)TrAT. O.

-1 0 4 1 3 2
12. Let A= 3 -2 2 |land B=| -1 2 3 |. Show that Theorem 1.4c holds for A and B.
1 -1 0 | 4 -1 3 ]
-1 0 47 1 3 27 15 —7 10
Notice that AB = 3 -2 2 -1 2 3|(=|-3 7 -6
1 -1 0] 4 -1 3] 2 1 -1
15 -3 2
Then (AB)T =| -7 7 1
10 -6 -1
-1 3 1 1 -1 4 ]
On the other hand, AT = 0 -2 -1 |andBT=|3 2 -1
4 -2 0 2 3 3 |
1 -1 4 -1 3 1 15 13 2 ]
Hence BTAT =| 3 2 -1 0O -2 -1 |=]|-7 3 1
2 3 3 4 2 0 10 6 -1 |

13. Give a nontrivial example of each of the following:

(a) A diagonal matrix



14.

15.

16.

17.

(b) An upper triangular matrix

5 -1 3
0 -3 2
0 0 1

(¢) A symmetric matrix

5 2 -1
2 -3 4
-1 4 1

(d) A skew symmetric matrix

) 2 1]
-2 -3 4
1 -4 1

Show that the product of any two diagonal matrices is a diagonal matrix.
Proof:

Let A and B be nxn diagonal matrices. Suppose that A = [a;;] and B = [b;;]. Then, by definition of diagonal, whenever

i # j, we have a;; = 0 and b;; = 0. Let AB = C = [¢;;]. By definition of matrix multiplication, ¢;; = Z airbij. Notice
k=1

that in order for the product a;;by; # 0, we must have ¢ = £ = j. Then, whenever i # j, ¢;; = 0 and when ¢ = j,

Cii = a4;b;;. Hence C' = AB is a diagonal matrix.

Show that the sum of any two lower triangular matrices is a lower triangular matrix.

Let A = [a;;] and B = [b;;] be lower triangular matrices. Let A+ B = C = [¢;5].

Then for each pair (4,7), ¢;; = a;; + bj;. Now, since A and B are lower triangular, a;; = 0 and b;; = 0 whenever ¢ < j.
But then, whenever ¢ < j, a;; + b;; =040 = 0. Hence A + B is also lower triangular.

Prove or Disprove: For any n x n matrix A, ATA = AAT

This statement is false. To see this, let A = [ é _21 } Then AT = [ ; _31 }

1 2 1 3 5 1 1 3 1 2 10 -1
T _ _ : T A — _
Thelrefore,AA—{3 _1][2 _1}—[1 1O]Wh11eAA—[2 _1}{3 _1]—[_1 5}.
Let A and B be symmetric matrices [I forgot to include this necessary hypothesis on the original handout.]. Show that
AB is symmetric if and only if AB = BA.

Proof:

First, suppose that A and B are symmetric matrices. Consider transpose of the product AB. By Theorem 1.4c,
(AB)T = BT AT. Then, since A and B are symmetric, AT = A and BT = B, we have (AB)T = BT AT = BA. Given
this, if we suppose that AB is symmetric, then (AB)Y = AB. But then we have AB = (AB)T = BTAT = BA,
so AB = BA. Conversely, if we suppose that AB = BA, then we have that (AB)T = BTAT = BA = AB, hence
(AB)T = AB. Thus AB is symmetric.



18. For each matrix A given, either find A=! or show that A is singular.

(a)

3 -1
=27

1 1 _|a b 3 -1 a b| [1 0
Suppose A7 exists. Let A _[c d].Then[2 5 ][c d1=1o0 1

. . . 3a—c=1 3b—d=0
Multiplying this out, we get the equations: { % + 5¢ — 0 and { %+ 5d — 1

Adding five times the first equations to the second equations gives: 17a = 5 and 176 = 1. Then a = 1—57 and b = 7.

—c=1,s0c=2_-1=—

}”

Using these and 3 —d=0,s0d= %

’ 17 177

5
Hence A~! = [ 17
1T

S|~

L o [a b 2 —17[a b] [1 0
Suppose A~ exists. Let A _{c d].Then{_él 9 }{ d1=10 1

2 —c=1 qf 2-d=0
—da+2c=0 —4b+2d =1

Multiplying this out, we get the equations: {

If we add twice the first equation to the second equation in each pair, we get 0 = 2 and 0 = 1, which is impossible,
so A~1 does not exist. Hence A is singular.

19. Show that for any n x n matrix 4, A + AT is symmetric.

Let A = [a;;], let AT = B = [b;;], and let A + AT = C = [c¢;;]. Notice that for each (4,7), b;j = a;i.
By definition, for any pair (Z,j), Cij = aij + bij = a;; + aj;. Therefore, ¢j; = aj; + by = aj; + a;j. Thus ¢;; = ¢j;.

Therefore, (A+ A7) = A+ A”. O,

A slightly more clever way to do this proof is to note that, using the second property of the transpose operation,
(A + AT)T = AT+ (AT)T, which by the first property of the transpose operation equals A7+ A, which by commutativity
of addition is just A + AT. Hence A + AT is symmetric.

20. LetA{ 2 1}

(a)

(b) Use A~! to solve the equation AT = b if: (i) b= { ?

-3 4
Find A~!
1 i_|a b 2 1 a b L0
Suppose A™" exists. Let A7 = [ e d ] Then { 3 4 ] [ c d 0 1
Multiplying this out, we get the equations: { 3044 =0 and { T 4d -1

Adding —4 times the first equations to the second equations gives: —11a = —4 and —11b = 1. Then a = ﬁ and

b=—1r.

+c=1,s0c=1-— ﬁz% and—ﬁ—kd—o bOd—%

Using these I

711

4 _ 1
Hence A~! = { w1 }
11 11

[E—
—
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=
=
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- - 4 1
(i) Recall that if A% =0, then = A~'b= [ B4l ] [
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21. Prove Theorem 1.7

Theorem 1.7: If A is an n x n nonsingular matrix, then A~! is nonsingular and (A_l)_1 = A.

Proof:

Let A be a nonsingular matrix. Then there is an inverse matrix A~! so that AA~! = I,,. Now, by definition, in order
for A=! to be nonsingular, there must be a matrix B such that A='B = BA~! = I,,. Since A satisfies this property,
and since, by Theorem 1.5, the inverse of a matrix is unique whenever it exists, we must have (A’l)_l =A. 0O

22. Suppose that f: R?> — R? is defined b}’f<[ :; ]) = [ —01 I)l } [ :Zj }

(a) Find the image of @ = [ j)l ] and then graph both @ and its image

=1 % 5] )

See graph below.

(b) Find the image of ¥ = { 71

2 } and then graph both ¢ and its image.

2|

(¢) Give a geometrical description of the transformation f given by A above.

In general, [ _O -1 ] [ * ] = { Y } This can be thought of geometrically as first reflecting across the line

1 0 Y —T
y = = and then reflecting about the origin.



1 2 1 0

23. Let f: R?> > R3begiven by A= | —1 0 |. Determine whether ornot ¥= | 2 | or @ = | 1 | are in the range
1 0 3 2
of f.
1 1 2 1
First, suppose that ¥ = | 2 | isin the range of f. Then for some pair (z,y), we must have | —1 0 { * } =1 2
3 T 3
rz+2y=1
From this, we must have —r=2 Since we cannot have both x = —2 and z = 3, this is impossible, so we know
z=3
1
that ¥ = | 2 | is not in the range of f.
3
0 1 2
Next, suppose that @ = | 1 | isin the range of f. Then for some pair (z,y), we must have | —1 0 { * } =11
2 1 o |LY 2
z+2y=0
From this, we must have —r=1 Since we cannot have both x = —1 and x = 2, this is also impossible, so we
=2
1
know that ¥ = | 2 | is not in the range of f.
3
24. (a) Find A if f(4) = Au defines rotation 45° counterclockwise in the plane.

cos¢p —sing

Recall that a rotation in the plane is defined by A = [ sing  coso

V2 V2
o
2 2

(b) Find the image of 7 = { g } under f. Then graph both ¥ and f(%).

]. Here, we have ¢ = 45° so A =

-
-

-4 3 2 1



