
Math 327
Exam 3 - Practice Problems

1. For each of the following matrices, find the adjoint.

(a)

[

2 −1
3 4

]

Notice that A11 = 4, A12 = (−1)3 = −3, A21 = (−1)(−1) = 1, and A22 = 2. Thus adjA =

[

4 1
−3 2

]

(b)

[

2 −3
−4 6

]

Notice that A11 = 6, A12 = (−1)(−4) = 4, A21 = (−1)(−3) = 3, and A22 = 2. Thus adjA =

[

6 3
4 2

]

(c)





2 −1 0
3 4 2
0 1 −3





Notice that A11 =

∣

∣

∣

∣

4 2
1 −3

∣

∣

∣

∣

= −14, A12 = (−1)

∣

∣

∣

∣

3 2
0 −3

∣

∣

∣

∣

= 9, A13 =

∣

∣

∣

∣

3 4
0 1

∣

∣

∣

∣

= 3

A21 = (−1)

∣

∣

∣

∣

−1 0
1 −3

∣

∣

∣

∣

= −3, A22 =

∣

∣

∣

∣

2 0
0 −3

∣

∣

∣

∣

= −6, A23 = (−1)

∣

∣

∣

∣

2 −1
0 1

∣

∣

∣

∣

= −2

A31 =

∣

∣

∣

∣

−1 0
4 2

∣

∣

∣

∣

= −2, A32 = (−1)

∣

∣

∣

∣

2 0
3 2

∣

∣

∣

∣

= −4, A33 =

∣

∣

∣

∣

2 −1
3 4

∣

∣

∣

∣

= 11

Thus adjA =





−14 −3 −2
9 −6 −4
3 −2 11





(d)





−1 4 3
2 −1 5
2 6 16





Notice that A11 =

∣

∣

∣

∣

−1 5
6 16

∣

∣

∣

∣

= −46, A12 = (−1)

∣

∣

∣

∣

2 5
2 16

∣

∣

∣

∣

= −22, A13 =

∣

∣

∣

∣

2 −1
2 6

∣

∣

∣

∣

= 14

A21 = (−1)

∣

∣

∣

∣

4 3
6 16

∣

∣

∣

∣

= −46, A22 =

∣

∣

∣

∣

−1 3
2 16

∣

∣

∣

∣

= −22, A23 = (−1)

∣

∣

∣

∣

−1 4
2 6

∣

∣

∣

∣

= 14

A31 =

∣

∣

∣

∣

4 3
−1 5

∣

∣

∣

∣

= 23, A32 = (−1)

∣

∣

∣

∣

−1 3
2 5

∣

∣

∣

∣

= 11, A33 =

∣

∣

∣

∣

−1 4
2 −1

∣

∣

∣

∣

= −7

Thus adjA =





−46 −46 23
−22 −22 11
14 14 −7





2. For each matrix from problem 1, find A(adjA).

(a) A(adjA) =

[

2 −1
3 4

] [

4 1
−3 2

]

=

[

11 0
0 11

]

(b) A(adjA) =

[

2 −3
−4 6

] [

6 3
4 2

]

=

[

0 0
0 0

]

(c) A(adjA) =





2 −1 0
3 4 2
0 1 −3









−14 −3 −2
9 −6 −4
3 −2 11



 =





−37 0 0
0 −37 0
0 0 −37







(d) A(adjA) =





−1 4 3
2 −1 5
2 6 16









−46 −46 23
−22 −22 11
14 14 −7



 =





0 0 0
0 0 0
0 0 0





3. For each matrix from problem 1, either find A−1 or show that A is singular.

(a) Using Corollary 3.4, A−1 = 1
det(A) (adjA) =

1
11 (adjA) =

1
11

[

4 1
−3 2

]

=

[

4
11

1
11

− 3
11

2
11

]

(b) Since A(adjA) = O, then det(A) = 0, so A is singular.

(c) Using Corollary 3.4, A−1 = 1
det(A) (adjA) = − 1

37 (adjA) = − 1
37





14
37

3
37

2
37

− 9
37

6
37

4
37

− 3
37

2
37 − 11

37





(d) Since A(adjA) = O, then det(A) = 0, so A is singular.

4. (a) Find the adjoint of A if A =





1 a a2

1 b b2

1 c c2





Notice that A11 =

∣

∣

∣

∣

b b2

c c2

∣

∣

∣

∣

= bc2 − b2c, A12 = (−1)

∣

∣

∣

∣

1 b2

1 c2

∣

∣

∣

∣

= b2 − c2, A13 =

∣

∣

∣

∣

1 b

1 c

∣

∣

∣

∣

= c− b

A21 = (−1)

∣

∣

∣

∣

a a2

c c2

∣

∣

∣

∣

= a2c− ac2, A22 =

∣

∣

∣

∣

1 a1

1 c1

∣

∣

∣

∣

= c2 − a2, A23 = (−1)

∣

∣

∣

∣

1 a

1 c

∣

∣

∣

∣

= a− c

A31 =

∣

∣

∣

∣

a a2

b b2

∣

∣

∣

∣

= ab2 − a2b, A32 = (−1)

∣

∣

∣

∣

1 a2

1 b2

∣

∣

∣

∣

= a2 − b2, A33 =

∣

∣

∣

∣

1 a

1 b

∣

∣

∣

∣

= b− a

Thus adjA =





bc2 − b2c a2c− ac2 ab2 − a2b

b2 − c2 c2 − a2 a2 − b2

c− b a− c b− a





(b) Find A−1

Multiplying, A(adjA) =




ab2 − a2b− cb2 + ca2 + c2b− c2a 0 0
0 ab2 − a2b− cb2 + ca2 + c2b− c2a 0
0 0 ab2 − a2b− cb2 + ca2 + c2b− c2a





If we let k = ab2 − a2b− cb2 + ca2 + c2b− c2a, then A−1 = 1
k
(adjA) = 1

k





bc2 − b2c a2c− ac2 ab2 − a2b

b2 − c2 c2 − a2 a2 − b2

c− b a− c b− a



.

5. Prove that if A is singular, then A(adjA) = 0

Proof:

Recall that by Theorem 3.8, if A is singular, then det(A) = 0. Recall that by Theorem 3.12, A(adjA) = det(A)In.
Then A(adjA) = 0In = 0.

6. Use Cramer’s Rule to solve each of the following linear systems.

(a)

{

x+ y = 2
2x− y = 10

det(A) =

∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

= −1− 2 = −3.

det(A1) =

∣

∣

∣

∣

2 1
10 −1

∣

∣

∣

∣

= −2− 10 = −12 and det(A2) =

∣

∣

∣

∣

1 2
2 10

∣

∣

∣

∣

= 10− 4 = 6.

Then x1 = det(A1)
det(A) = −12

−3 = 4 and x2 = det(A2)
det(A) = 6

−3 = −2.



(b)

{

x− 4y = 6
3x+ y = 5

det(A) =

∣

∣

∣

∣

1 −4
3 1

∣

∣

∣

∣

= 1 + 12 = 13.

det(A1) =

∣

∣

∣

∣

6 −4
5 1

∣

∣

∣

∣

= 6 + 20 = 26 and det(A2) =

∣

∣

∣

∣

1 6
3 5

∣

∣

∣

∣

= 5− 18 = −13.

Then x1 = det(A1)
det(A) = 26

13 = 2 and x2 = det(A2)
det(A) = −13

13 = −1.

(c)







3x− 2y + z = −6
4x− 3y + 3z = 7
2x+ y − z = −9

det(A) =

∣

∣

∣

∣

∣

∣

3 −2 1
4 −3 3
2 1 −1

∣

∣

∣

∣

∣

∣

= (9) + (−12) + (4)− (−6)− (8)− (9) = −10.

det(A1) =

∣

∣

∣

∣

∣

∣

−6 −2 1
7 −3 3
−9 1 −1

∣

∣

∣

∣

∣

∣

= (−18) + (54) + (7)− (−18)− (14)− (27) = 20.

det(A2) =

∣

∣

∣

∣

∣

∣

3 −6 1
4 7 3
2 −9 −1

∣

∣

∣

∣

∣

∣

= (−21) + (−36) + (−36)− (14)− (24)− (−81) = −50.

det(A3) =

∣

∣

∣

∣

∣

∣

3 −2 −6
4 −3 7
2 1 −9

∣

∣

∣

∣

∣

∣

= (81) + (−28) + (−24)− (36)− (21)− (72) = −100.

Then x1 = det(A1)
det(A) = 20

−10 = −2, x2 = det(A1)
det(A) = −50

−10 = 5 and x3 = det(A2)
det(A) = −100

−10 = 10.

7. For each given pair of points P and Q, find the vector
−−→
PQ and then sketch this vector.

(a) P (−1, 2), Q(3,−5)

−−→
PQ =

[

4
−7

]

(b) P (−1, 0, 3), Q(1, 2, 4)

−−→
PQ =





2
2
1





(c) P (3,−4, 1), Q(−1, 4, 0)

−−→
PQ =





−4
8
−1





8. Determine the tail of the vector ~u =





2
−1
5



 if:

(a) The head is (1, 2, 3)

P = (−1, 3,−2)

(b) The head is (3,−2, 0)

P = (1,−1,−5)

(c) Find the head if the tail is (1, 2, 3)

P = (3, 1, 8)

9. Let ~u =





3
0
−1



 and ~v =





−1
5
2



. Find:

(a) ~u− ~v





3
0
−1



−





−1
5
2



 =





4
−5
−3





(b) 3~u+ 4~v




9
0
−4



+





−4
20
8



 =





5
20
5







(c) ~w if ~u+ ~v + ~w = ~0.




3
0
−1



+





−1
5
2



 =





2
5
1



, so ~w =





−2
−5
−1



.

10. If possible, find scalars c1, c2 and c3 not all zero such that c1





1
2
3



+ c2





3
−1
2



+ c3





−4
3
−1



 =





0
0
0





Considering the associated homogeneous system, we have:





1 3 −4 0
2 −1 3 0
3 2 −1 0





r2−2r1→r2

r3 − 3r1 → r3





1 3 −4 0
0 −7 11 0
0 −7 11 0





r3−r2→r3

− 1
7r2 → r2





1 3 −4 0
0 1 − 11

7 0
0 0 0 0



 r1 − 3r2 → r1





1 0 5
7 0

0 1 − 11
7 0

0 0 0 0





From this, if we set c3 = t, we must have c1 = − 5
7 t and c2 = 11

7 t. Therefore, if we take z = 7, then c1 = −5, c2 = 11,
and c3 = 7 is one possible solution.

11. If possible, find scalars c1, c2 and c3 not all zero such that c1





2
3
1



+ c2





−1
2
5



+ c3





3
−1
−2



 =





0
0
0





Considering the associated homogeneous system, we have:





2 −1 3 0
3 2 −1 0
1 5 −2 0



 r1 ↔ r3





1 5 −2 0
3 2 −1 0
2 −1 3 0





r2−3r1→r2

r3 − 2r1 → r3





1 5 −2 0
0 −13 5 0
0 −11 7 0



− 1
13r2 → r2





1 5 −2 0
0 1 − 5

13 0
0 −11 7 0



 r3 + 11r2 → r3





1 5 −2 0
0 1 − 5

13 0
0 0 36

13 0





From this, if we see that the coefficient matrix is non-singular (its determinant in non-zero), so the trivial solution is
the only possible solution.

12. Let V be the set of all functions of the form f(x) = rekx, where r, k are real numbers. Let ⊕ be defined as r1e
k1x ⊕

r2e
k2x = r1r2e

(k1+k2)x Let ⊙ be defined as c ⊙ rekx = crekx for any real number c. Determine whether or not V is a
vector space. If it is, prove that it satisfies each part of the definition of a vector space. If not, show which properties
are not satisfied.

(a) Let r1e
k1x and r2e

k2x be in V . Then r1e
k1x ⊕ r2e

k2x = r1r2e
(k1+k2)x. Notice that r1r2 ∈ R and (k1 + k2) ∈ R, so

V is closed under addition.

(1) Let ~u = r1e
k1x and ~v = r2e

k2x be in V . Then ~u ⊕ ~v = r1e
k1x ⊕ r2e

k2x = r1r2e
(k1+k2)x = (r2r1)e

(k2+k1)x by
commutativity of real number multiplication and commutativity of real number addition.

Notice that ~v ⊕ ~u = r2e
k2x ⊕ r1e

k1x = r2r1e
(k2+k1)x. Hence ~u⊕ ~v = ~v ⊕ ~u.

(2) Let ~u = r1e
k1x, ~v = r2e

k2x, and ~w = r3e
k3x be in V . Then ~u ⊕ (~v ⊕ ~w) = r1e

k1x ⊕ (r2e
k2x ⊕ r3e

k3x) = r1e
k1x ⊕

r2r3e
(k2+k3)x = r1(r2r3)e

(k1+(k2+k3))x. Using associativity of real number addition and real number multiplication:
= (r1r2)r3e

((k1+k2)+k3)x = (~u⊕ ~v)⊕ ~w

(3) We define ~0 = 1e0x = 1e0 = 1. Notice that if ~u = r1e
k1x, then ~u ⊕ ~0 = r1e

k1x ⊕ 1e0x = r1(1)e
(k1+0)x = r1e

k1x =
~u = (1)(r1)e

(0+k1) = 1e0 ⊕ r1e
k1x = ~0⊕ ~u.

(4) Suppose ~u = r1e
k1x. If r1 6= 0 and ~u 6= ~0, then we define −~u = 1

r1
e−k1x. Notice that ~u⊕−~u = r1e

k1x ⊕ 1
r1
e−k1x =

r1
1
r1
e(k1−k1)x = 1e0 = ~0. Similarly, −~u ⊕ ~u = 1

r1
e−k1x ⊕ r1e

k1x = 1
r1
r1e

(−k1+k1)x = 1e0 = ~0. The negative of ~0 is ~0.

Notice that 1e0 ⊕ 1e0 = (1)(1)e(0+0)x = 1e0 = ~0. However, if r1 = 0, then ~u = 0. There is no way to define −~u in this
case, since 0⊕ r1e

k1x = 0 for any vector in V . Therefore, this property fails.

(b) Let ~u = r1e
k1x and c ∈ R. Then c ⊙ ~u = c ⊙ r1e

k1x = cr1e
k1x. Since cr1 is a real number, then V is closed under

scalar multiplication.



(5) Let 4 ∈ R and ~u = 2ex, ~v = 3ex. Then 4⊙ (~u⊕ ~v) = 4(2)(3)e(1+1)x = 24e2x.

However, 4⊙ ~u = 8ex and 4⊙ ~v = 12ex, so 4⊙ ~u⊕ 4⊙ ~v = 8ex ⊕ 12ex = 96e2x, so this property also fails.

(6) Let ~u = ex. Then (2 + 3) ⊙ ~u = (2 + 3)ex = 5ex. However, 2ex ⊕ 3ex == 6ekx. Therefore, this property does not
hold.

(7) Let c, d ∈ R and let ~u = rekx. Then c⊙ (d⊙ ~u) = c⊙ (dr)ekx = c(dr)ekx = (cd)rekx, where the final equality uses
the associativity of real number multiplication. Thus this property holds.

(8) Consider 1⊙ rekx = 1rekx = rekx. Then this property holds.

13. Let V be the set of all ordered triples (x, y, z) where x, y and z are real numbers. Let ⊕ be defined as (x1, y1, z1) ⊕
(x2, y2, z2) = (x1 + z2, y1 + y2, z1 + x2) Let ⊙ be defined as c⊙ (x, y, z) = (cx, cy, cz) for any real number c. Determine
whether or not V is a vector space. If it is, prove that it satisfies each part of the definition of a vector space. If not,
show which properties are not satisfied.

(a) Let (x1, y1, z1) and (x2, y2, z2) be elements of V . Then (x1, y1, z1)⊕ (x2, y2, z2) = (x1 + z2, y1 + y2, z1 + x2). Since
the sum of any pair of real numbers is a real number, (x1 + z2, y1 + y2, z1 + x2) is an ordered triple of real numbers.
Thus V is closed under addition.

(1) Let (x1, y1, z1) and (x2, y2, z2) be elements of V . Then (x1, y1, z1)⊕ (x2, y2, z2) = (x1 + z2, y1 + y2, z1 + x2)

On the other hand, (x2, y2, z2)⊕ (x1, y1, z1) = (x2 + z1, y2 + y1, z2 + x1)

Using a specific counterexample, (2, 3, 4) ⊕ (4, 3, 2) = (2 + 2, 3 + 3, 4 + 4) = (4, 6, 8), while (4, 3, 2) ⊕ (2, 3, 4) =
(4 + 4, 3 + 3, 2 + 2) = (8, 6, 4). Therefore, ⊕ is not commutative.

(2) Consider (1, 2, 3) and (4, 5, 6) and (7, 8, 9)

(1, 2, 3)⊕ [(4, 5, 6)⊕ (3, 1, 2)] = (1, 2, 3)⊕ (4 + 2, 5 + 1, 6 + 3) = (1, 2, 3)⊕ (6, 6, 9) = (1 + 9, 2 + 6, 3 + 6) = (10, 8, 9)

while [(1, 2, 3)⊕ (4, 5, 6)]⊕ (3, 1, 2) = (1+ 6, 2+ 5, 3+ 4)⊕ (3, 1, 2) = (7, 7, 7)⊕ (3, 1, 2) = (7+ 2, 7+ 1, 7+ 3) = (9, 8, 10)

Therefore, addition is not associative.

(3) Let ~0 = (0, 0, 0). Then (x, y, z)⊕(0, 0, 0) = (x+0, y+0, z+0) = (x, y, z) and (0, 0, 0)⊕(x, y, z) = (0+x, 0+y, 0+z) =
(x, y, z).

Therefore, this vector space does have a zero.

(4) Let (x, y, z) be a vector, and consider (x, y, z)⊕ (−z,−y,−x). Then (x, y, z)⊕ (−z,−y,−x) = (x−x, y− y, z− z) =
(0, 0, 0) = ~0.

On the other hand, (−z,−y,−x) ⊕ (x, y, z) = (−z + z,+y,−x + x) = (0, 0, 0) = ~0. Therefore, every element has a
negative.

(b) Let (x, y, z) be a vector and r ∈ R. Then r⊙ (x, y, z) = (rx, ry, rz) is still an ordered triple of real numbers, so this
vector space is closed under scalar multiplication.

(5) Let (x1, y1, z1) and (x2, y2, z2) be elements of V and r ∈ R. Then r⊙ [(x1, y1, z1)⊕ (x2, y2, z2)] = r⊙ (x1 + z2, y1 +
y2, z1 + x2) = (r(x1 + z2), r(y1 + y2), r(z1 + x2)) = (rx1 + rz2, ry1 + ry2, rz1 + rx2), where the last equality is due to
the distributive property of real numbers.

On the other hand, r⊙ (x1, y1, z1)⊕ r⊙ (x2, y2, z2)] = (rx1, ry1, rz1)⊕ (rx2, ry2, rz2) = (rx1 + rz2, ry1 + ry2, rz1 + rx2)

Therefore, this distributive property holds.

(6) Consider 2, 3 ∈ R and (3, 4, 5) ∈ V . Then (2 + 3)⊙ (3, 4, 5) = 5⊙ (3, 4, 5) = (15, 20, 25).

On the other hand, 2⊙ (3, 4, 5)⊕ 3⊙ (3, 4, 5) = (6, 8, 10)⊕ (9, 12, 15) = (6 + 15, 8 + 12, 10 + 9) = (21, 20, 19)

Then this property is not satisfied.

(7) Consider c, d ∈ R and (x, y, z) ∈ V . Then (cd)⊙ (x, y, z) = ((cd)x, (cd)y, (cd)z).

On the other hand, c ⊙ (d ⊙ (x, y, z)) = c ⊙ (dx, dy, dz) = (c(dx), c(dy), c(dz)) = (cd(x), cd(y), cd(z)), where the last
equality uses the associativity of real number multiplication.

Then this property is satisfied.

(8) Notice that Consider (1)⊙ (x, y, z) = ((1x, 1y, 1z) = (x, y, z), so this property is satisfied.



14. Let V be the set of real numbers. Let ⊕ be defined as r⊕ s = rs. Let ⊙ be defined as c⊙ r = c+ r for any real number
c. Determine whether or not V is a vector space. If it is, prove that it satisfies each part of the definition of a vector
space. If not, show which properties are not satisfied.

(a) Let r, s ∈ R. Then r ⊕ s = rs, which, by definition of real number multiplication, is a real number. Then V is
closed under ⊕.

(1) Let r, s ∈ R. Then r ⊕ s = rs = sr = s ⊕ r where the middle equality uses the commutativity of real number
multiplication.

(2) Let r, s, t ∈ R. Then r ⊕ (s ⊕ t) = r ⊕ (st) = r(st) = rs(t) = (r ⊕ s) ⊕ t. We use the associativity of real number
multiplication.

(3) Let r ∈ R and define ~0 = 1. Then r ⊕~0 = r(1) = r = 1(r) = ~0⊕ r. Hence this property holds.

(4) This property does not hold. If we take r = 0, then rs = 0s = 0 for any s ∈ R, but ~0 = 1. Hence r = 0 has no
negative.

(b) Let r ∈ V and c ∈ R. Then c ⊙ r = c + r. Since the real numbers are closed under addition, this vector space is
closed under ⊙.

(5) Let c = 2, ~u = 3 and ~v = 4. Then c⊙ (~u⊕ ~v) = 2⊙ (3)(4) = 2 + 12 = 14.

On the other hand, c⊙ ~u⊕ c⊙ ~v = (2 + 3)⊕ (2 + 4) = 5⊕ 6 = (5)(6) = 30.

Hence this property does not hold.

(6) Let c = 2, d = 3 and ~u = 5. Then (c+ d)⊙ ~u = 5⊙ 5 = 5 + 5 = 10.

On the other hand, c⊙ ~u⊕ d⊙ ~u = (2 + 5)⊕ (3 + 5) = 7⊕ 8 = (7)(8) = 56.

Hence this property does not hold.

(7) Let c = 3, d = 4, and ~u = 5. Then c⊙ (d⊙ ~u) = c⊙ (4 + 5) = 3 + (4 + 5) = 3 + (9) = 12.

However, (cd)⊙ ~u = 12⊙ 5 = 12 + 5 = 17. Thus this property does not hold.

(8) Let r = 5. Then 1 · 5 = 1 + 5 = 6. Hence this property does not hold.

15. Prove that a vector space has only one zero vector (that is, the zero of a vector space is unique).

Proof: Let V be a vector space and suppose that ~0 and 0̂ are both zero vectors.

By definition of a zero vector, ~u ⊕ ~0 = ~0 ⊕ ~u = ~u for any ~u ∈ V . Similarly, ~u ⊕ 0̂ = 0̂ ⊕ ~u = ~u for any ~u ∈ V . In
particular, 0̂⊕~0 = 0̂ since ~0 is a zero vector. But 0̂⊕~0 = ~0 since 0̂ is a zero vector. Thus 0̂ = ~0. Hence the zero vector
is unique.

16. Prove that in a vector space, −1⊙ ~u = −~u for any vector ~u ∈ V .

Proof: Let V be a vector space and let ~u ∈ V . Consider −1⊙ ~u.

Notice that −1⊙ ~u⊕ ~u = −1⊙ ~u⊕ 1⊙ ~u by Property (8) of a vector space.

= (−1 + 1)⊙ ~u by Property (6) of a vector space.

= 0⊙ ~u by real number addition.

= ~0 by part (a) of Theorem 4.2.

Similarly, ~u⊕−1⊙ ~u = 1⊙ ~u⊕−1⊙ ~u by Property (8) of a vector space.

= (1 + (−1))⊙ ~u by Property (6) of a vector space.

= 0⊙ ~u by real number addition.

= ~u by part (a) of Theorem 4.2.

Hence −~u = −1⊙ ~u



17. Prove that in any vector space, for a given vector ~u, −(−~u) = ~u.

Proof: Let V be a vector space and let ~u ∈ V . Consider −(−~u).

Using the result of problem 16 above, −~u = −1⊙ ~u. Then −(−~u) = −(−1⊙ ~u) = −1⊙ (−1⊙ ~u).

Applying Property (7) of a vector space, −1⊙ (−1⊙ ~u) = ((−1)(−1))⊙ ~u = 1⊙ ~u.

Then, applying Property (8) of a vector space, 1⊙ ~u = ~u. Thus −(−~u) = ~u.

18. Let V = R3 =





x

y

z



 where x , y and z are real numbers, and ⊕ and ⊙ are the usual operations. Determine which of

the following are subspaces of V :

(a) W1 =











x

y

z



 : 2x− y = z







Notice that since 2x− y = z, if ~u,~v ∈ W1, then they have the form: ~u =





x1

y1
2x1 − y1



 and ~v =





x2

y2
2x2 − y2





Then ~u + ~v =





x1

y1
2x1 − y1



 +





x2

y2
2x2 − y2



 =





x1 + x2

y1 + y2
2x1 − y1 + 2x2 − y2



 =





x1 + x2

y1 + y2
2(x1 + x2)− (y1 + y2)



. Thus

~u+ ~v ∈ W1.

Similarly, for any r ∈ R, r~u = r





x1

y1
2x1 − y1



 =





rx1

ry1
r(2x1 − y1)



 =





rx1

ry1
2rx1 − ry1



. Thus r~u ∈ W1.

Hence W1 is a subspace of V = R3.

(b) W2 =











x

y

z



 : x+ y − z = 0







Notice that since x + y − z = 0, then x + y = z, so if ~u,~v ∈ W1, then they have the form: ~u =





x1

y1
x1 + y1



 and

~v =





x2

y2
x2 + y2





Then ~u+~v =





x1

y1
x1 + y1



+





x2

y2
x2 + y2



 =





x1 + x2

y1 + y2
x1 + y1 + x2 + y2



 =





x1 + x2

y1 + y2
(x1 + x2) + (y1 + y2)



. Thus ~u+~v ∈ W2.

Similarly, for any r ∈ R, r~u = r





x1

y1
x1 + y1



 =





rx1

ry1
r(x1 + y1)



 =





rx1

ry1
rx1 + ry1



. Thus r~u ∈ W2.

Hence W2 is a subspace of V = R3.

(c) W3 =











x

y

z



 : x+ y = 1







19. Let V = M33. Determine which of the following are subspaces of V .

Notice that if ~u =





1
0
1



 and ~v =





0
1
1



, then ~u,~v ∈ W3. However, ~u+~v =





1
0
1



+





0
1
1



 =





1
1
1



, but 1+1 = 2 6= 1,

so the condition for being in W3 is not satisfied.



Since W3 is not closed under addition, it is not a subspace of R3.

(a) W1 is the set of all 3× 3 scalar matrices.

Recall that a scalar 3× 3 matrix is any matrix of the form:





k 0 0
0 k 0
0 0 k



 for some k ∈ R.

Consider the sum of two scalar matrices:





a 0 0
0 a 0
0 0 a



 +





b 0 0
0 b 0
0 0 b



 =





a+ b 0 0
0 a+ b 0
0 0 a+ b



. Since a + b

is a constant in R, then W1 is closed under addition.

Next, consider a scalar multiple of a scalar matrix: r





a 0 0
0 a 0
0 0 a



 =





ra 0 0
0 ra 0
0 0 ra



. Since ra is a constant in

R, then W1 is also closed under scalar multiplication.

Hence W1 is a subspace of M33

(b) W2 is the set of all non-singular 3× 3 matrices.

Recall that the zero matrix O is singular (it has determinant zero). Let A be a non-singular 3× 3 matrix. Since
0⊙A = O, W2 is not closed under scalar multiplication, and hence is not a subspace of M33.

(c) W3 is the set of all symmetric 3× 3 matrices.

Recall that a symmetric 3× 3 matrix is any matrix of the form:





a b c

b d e

c e f



.

Consider the sum of two symmetric matrices:





a1 b1 c1
b1 d1 e1
c1 e1 f1



+





a2 b2 c2
b2 d2 e2
c2 e2 f2



 =





a1 + a2 b1 + b2 c1 + c2
b1 + b2 d1 + d2 e1 + e2
c1 + c2 e1 + e2 f1 + f2



.

Notice that the resulting matrix is symmetric. Hence W3 is closed under addition.

Next, consider a scalar multiple of a symmetric matrix: r





a1 b1 c1
b1 d1 e1
c1 e1 f1



 =





ra1 rb1 rc1
rb1 rd1 re1
rc1 re1 rf1



. Notice that the

resulting matrix is symmetric. Hence W3 is also closed under scalar multiplication.

Hence W3 is a subspace of M33

20. Let V be C(−∞,∞) with the usual operations. Determine which of the following are subspaces of V .

(a) W1 is the set of all continuous functions such that f(0) = 0.

Let f and g be continuous functions satisfying f(0) = 0 and g(0) = 0. Consider (f + g)(t). As proven in Calculus
I, the sum of two continuous functions is continuous. Moreover, (f + g)(0) = f(0) + g(0) = 0 + 0 = 0. Hence W1

is closed under addition.

Next, let c ∈ R and consider cf(t). As proven in Calculus I, a scalar multiple of a continuous function is continuous.
Moreover, cf(0) = c(0) = 0. Hence W1 is closed under scalar multiplication. Thus W1 is a subspace of C(−∞,∞).

(b) W2 is the set of all continuous function such that f(0) = 1.

Let f(t) = t2 + 1. Then f(0) = 02 + 1 = 1. Let g(t) = 1. Then g(0) = 1. However, (f + g)(0) = 1 + 1 = 2. Hence
f + g is not in W2. Since W2 is not closed under addition, W2 is not a subspace of C(−∞,∞).

(c) W3 is the set of all differentiable functions.

First and foremost, recall that, as proven in Calculus I, if a function f(t) is differentiable, then f(t) is also
continuous, so W3 ⊆ C(−∞,∞).



Let f(t) and g(t) be differentiable functions. As proven in Calculus I, d

dt
(f(t) + g(t)) = f ′(t) + g′(t). Therefore,

the sum of two differentiable functions is differentiable. Similarly, d

dt
(cf(t)) = cf ′(t), so a scalar multiple of a

differentiable function is differentiable. Since the set of differentiable functions is closed under both addition and
scalar multiplication, then W3 is a subspace of C(−∞,∞).

(d) W4 is the set of all constant functions.

Let f(t) = a and g(t) = b be constant functions. Recall that constant functions are continuous on R (they are
differentiable – alternatively, they are zero degree polynomials). Notice that (f + g)(t) = a + b, which is still a
constant function. Also, if r ∈ R, then rf(t) = ra which is a constant function. Thus W4 is closed under both
addition and scalar multiplication. Hence W4 is a subspace of C(−∞,∞).

21. Let v1 =

[

1
−2

]

and v2 =

[

−2
4

]

. Which of the following vectors are linear combinations of v1 and v2?

Let ~v =

[

a

b

]

be a vector and suppose that ~v is a linear combination of ~v1 and ~v2. We consider the following matrix

related to the linear system ~v = c1 ~v1 + ~v2:

[

1 −2 a

−2 4 b

]

r2 + 2r1 → r2

[

1 −2 a

0 0 2a+ b

]

This system has a solution if and only if 2a+ b = 0.

(a)

[

6
−12

]

Since 2(6) + (−12) = 0, this vector is a linear combination of ~v1 and ~v2. In fact, ~v = 6~v1.

(b)

[

3
−5

]

Since 2(3) + (−5) = 1 6= 0, this vector is not a linear combination of ~v1 and ~v2.

(c)

[

0
0

]

Since 2(0)+ (0) = 0, this vector is a linear combination of ~v1 and ~v2. In fact, ~v = 0~v1 (we are being a bit silly here
– ~0 is a linear combination of any set of vectors since we can take the scalars to be all zeros)

22. Let v1 =





2
3
1



, v2 =





−1
2
3



 and v3 =





3
−1
−4



. Which of the following vectors are linear combinations of v1, v2 and

v3?

Let





a

b

c



 be an arbitrary vector in R3 and consider the related system of equations:





2 1 3 a

3 2 −1 b

1 3 −4 c



 r1 ↔ r3





1 3 −4 c

3 2 −1 b

2 −1 3 a





r2−3r1→r2

r3 − 2r1 → r3





1 3 −4 c

0 −7 11 b− 3c
0 −7 11 a− 2c



 r2 − r3 → r3





1 3 −4 c

0 −7 11 b− 3c
0 0 0 b− a− c



.

From this, we see that this system has a solution if and only if b− a− c = 0. That is, if b = a+ c.

(a)





3
6
3







Using the condition proved above, we have a = 3, b = 6, and c = 3, so a+ c = 3+ 3 = 6 = b. Hence this vector is
a linear combination of ~v1 and ~v2.

(b)





3
4
2





Using the condition proved above, we have a = 3, b = 4, and c = 2, so a+ c = 3+ 2 = 4 6= b. Hence this vector is
not a linear combination of ~v1 and ~v2.

(c)





0
0
0





Using the condition proved above, we have a = 0, b = 0, and c = 0, so a+ c = 0+ 0 = 0 = b. Hence this vector is
a linear combination of ~v1 and ~v2.

23. If possible, find a non-zero vector in the null space of each of the following vectors:

(a)

[

3 −1
2 4

]

Consider the matrix associated with the homogeneous system A~x = ~0:

[

3 −1 0
2 4 0

]

r1 − r2 → r1

[

1 −5 0
2 4 0

]

r2 − 2r1 → r2

[

1 −5 0
0 14 0

]

1
14r2 → r2

[

1 −5 0
0 1 0

]

r1 + 5r2 →

r1

[

1 0 0
0 1 0

]

Then this system has only the trivial solution. That is, ~0 is the only vector in the null space of

[

3 −1
2 4

]

(b)

[

−1 2
2 −4

]

Consider the matrix associated with the homogeneous system A~x = ~0:

[

−1 2 0
2 −4 0

]

r2 + 2r1 → r2

[

−1 2 0
0 0 0

]

− r1 → r1

[

1 −2 0
0 0 0

]

Then this system has solutions of the form: a − 2b = 0. For example, if b = 1, then a = 2. Notice that
[

−1 2
2 −4

] [

2
1

]

=

[

0
0

]

, so

[

2
1

]

is in the null space of

[

−1 2
2 −4

]

.

(c)





−3 0 4
2 −1 0
5 0 −2





Consider the matrix associated with the homogeneous system A~x = ~0:





−3 0 4 0
2 −1 0 0
5 0 −2 0



− r1 − r2 → r1





1 1 −4 0
2 −1 0 0
5 0 −2 0





r2−2r1→r2

r3 − 5r1 → r3





1 1 −4 0
0 −3 8 0
0 5 18 0





−
1

3
r2→r2

r3 − 5r2 → r3





1 1 −4 0
0 1 − 8

3 0
0 0 14

3 0



.

Notice that we can see that the determinant of the coefficient matrix is non-zero, so this system has only the
trivial solution.

24. Describe the set of all vectors in the null space of the matrix A =





−2 1 4
3 0 −1
1 1 3







Considering the associated homogeneous system, we have:





−2 1 4 0
3 0 −1 0
1 1 3 0



 r2+r1 → r1





1 1 3 0
3 0 −1 0
1 1 3 0





r2−3r1→r2

r3 − r1 → r3





1 1 3 0
0 −3 −10 0
0 0 0 0



− 1
3r2 → r2





1 1 3 0
0 1 10

3 0
0 0 0 0



 r1 − r2 → r1





1 0 − 1
3 0

0 1 10
3 0

0 0 0 0





From this, if we set z = t, we must have x = 1
3 t and y = − 10

3 t. Thus the null space of this matrix is all vectors of the

form:





1
3 t

− 10
3 t

t



 for any t ∈ R.


