Math 327
Exam 3 - Practice Problems

1. For each of the following matrices, find the adjoint.

2 -1
(2) [3 4 }
Notice that Ay =4, A2 = (=1)3 = =3, Az = (—=1)(-1) =1, and Az = 2. Thus adjA { —43 ; ]
2 =3
(b) [4 6 ]
Notice that All — 67 A12 — (_1)(—4) — 47 A21 = (—1)(—3) = 37 and A22 = 2. Thus ade = |: i g :|
2 -1 0
(c) 3 4 2
0 1 -3
. 4 2 32 3 4
NotlcethatAll‘ 1 _3 ‘147 A12(1)‘ 0 —3 ’_9’A13' 0 1 ‘_3
Azl(l)‘ ) _3‘ 3,A22‘0 _3‘6,1423(1)‘0 1 ‘2
-1 0 2 0 -1
A31_’ 4 2‘—271432_(1)‘3 2‘_4’1433_)3 4 ‘_11
—-14 -3 -2
Thus adjA = 9 -6 —4
3 -2 11
-1 4 3
@ | 2 -1 5
2 6 16
. -1 5 2 5 -1
NotlcethatAn—‘ 6 16 ‘_—46 A = ( 1)' 2 16 ’——22,A13—’ 2 6 ‘—14
4 3 -1 3 -1 4
A21—(—1)‘ 6 16 ‘——46,1422—‘ 2 16 ' 22, Agz = ( 1)’ 2 6 ‘_14
4 3 -1 3 -1 4
A31:’_1 5‘:23,1432:(—1)‘ 9 5‘—11a1433_’ 2 _1’:_7
—46 —46 23
Thus adjA= | —22 —22 11
14 14 -7

2. For each matrix from problem 1, find A(adjA).
. [2 -1 4 1 11 0
(a) A(adjA) = 3 ] [ } = [ 0 11 }

HSS}

-3
6
4
i ] —14 —3 -2 =37 0 0

(G V]

(b) A(adjA) =

()

—4 | = 0 =3vr 0
11 0 0 =37

(c) AladjA) =




-1 4 3 —46 —46 23 00 0
(d) A(adjA)=| 2 -1 5 —22 —22 11 [=[0 0 0
2 6 16 14 14 -7 00 0

3. For each matrix from problem 1, either find A~! or show that A is singular.

: _ . . 4 1 4 L
(a) Using Corollary 3.4, A= = Ftl(A) (adjA) = ﬁ(ade) = 1—11 [ 3 9 } = [ _1% ]1217 ]
(b) Since A(adjA) = O, then det(A) = 0, so A is singular.
14 3 2
37 37 37
(c) Using Corollary 3.4, A= = Ttl(A) (adjA) = —%(ade) = —% —% % 3%1
37 31 37
(d) Since A(adjA) = O, then det(A) =0, so A is singular.
1 a a®
4. (a) Find the adjoint of Aif A= | 1 b b
1 ¢ ¢
Notice that Ay — | © U | v e, A= (-1 | b 0 | Cprm e a | D P 2ty
otice a 11 = c 02 = 0C C, A12 = 1 C2 = c*, A13 = 1 ¢ =c
2 1 1
Aoy = (—1) ch ‘ ZGQC—GC27A22=‘ 1 Z1 ‘ZCQ—G ,A23:(—1)’ 1 ‘:a—c
a a’ 1 a? 1 a
ASI:’b b2 :abQ—GQb,A;;Q:(—l)’l bQ‘ZGQ—b2,A33:‘1 b —b—a
bc? —b%c a’c—ac® ab® —a?b
Thus adjA = b? — c? c? —a? a? — b?
c—b a—c b—a
(b) Find A~!
Multiplying, A(adjA) =
ab® — a?b — cb? + ca?® + c?b — c%a 0 0
0 ab® — a?b — cb? + ca® + 2b — ca 0
0 0 ab® — a?b — cb? + ca® + b — %a

be? —bc a’c—ac® ab®—a?b
If we let k = ab? — a®b — cb?® + ca® 4+ c?b — c?a, then A7 = L(adjA) =1 | V¥’ —c F—a® a®>—b?
c—b a—c b—a
5. Prove that if A is singular, then A(adjA) =0
Proof:

Recall that by Theorem 3.8, if A is singular, then det(A) = 0. Recall that by Theorem 3.12, A(adjA) = det(A)L,.
Then A(adjA) = 01, = 0.

6. Use Cramer’s Rule to solve each of the following linear systems.

r+y=2
(a) { 20 —y =10

det(A)‘ s ‘123.
det(Ay) = ‘ oL ‘ — 210 = —12 and det(A;) — ‘ -~ ‘ —10-4=6
Then z; = Cﬁ(al)) = __—132 =4 and xp = Ciieett(fj)) = _% = -2.



r—4y =6
(b) { 3c+y=>5

1 —4

det(A)—’ N ‘_1+12_13.

det(A;) = 6 41 61 20=26and det(Ay) = Lo 5 18— 13
5 1 3 5
det(A det(A —

Then o1 = G = 5 =2 and w2 = Gy = 5 = —1.

Jr —2y+2=—6
(c) dr —3y+32=17
2x4+y—2=-9

3 -2 1

det(A) =] 4 =3 3 |=(9)+(—12)+ (4) - (=6) — (8) — (9) = —10.
2 1 -1
-6 -2 1

det(A1)=| 7 =3 3 |=(=18)+ (54) + (7) — (—18) — (14) — (27) = 20.
-9 1 -1
3 -6 1

det(A) = 4 7 3 |=(-21)+(—36)+ (—36) — (14) — (24) — (—81) = —50.
2 -9 -1
3 -2 —6

det(Az)=|4 -3 7 |=(81)4(—28)+ (—24) — (36) — (21) — (72) = —100.
2 1 -9

Then a1 = ) = 25 = ~2.m = i = = =5 mnd s = GG = =10

7. For each given pair of points P and @, find the vector ]@ and then sketch this vector.

(a) P(—1,2), Q(3,-5) (b) P(-1,0,3), Q(1,2,4) (c) P(3,—4,1), Q(—1,4,0)
4 2 —4
PG = [ 7 ] PG=| 2 PG=| s
1 -1
2
8. Determine the tail of the vector « = | —1 | if:
)
(a) The head is (1,2,3) (b) The head is (3,—2,0) (¢) Find the head if the tail is (1,2, 3)
P=(-1,3-2) P=(1,-1,-5) P=(31,8)
3 -1
9. Let © = 0 and ¥ = 5 |. Find:
-1 2
(a) 4—7T
[ 3 ] [ —1 7] [ 4
0 |- 5 |=]-5
-1 2 -3




(c) @ if @+ 7+ @ =0.
3 -1 2 -2
0 + 5 =1| 95 |,sow=| —H
~1 2 1 ~1
1 3 —4 0
10. If possible, find scalars c¢1, ¢ and c3 not all zero such that ¢y | 2 | +¢c2 | =1 | +¢3 3 =10
3 2 -1 0
1 3 —-410 Py 21157 1 3 —-410
Considering the associated homogeneous system, we have: | 2 -1 3 |0 | r3—3r;—r3 | 0 =7 11 |0
3 2 -—-1]0 0 -7 1110
ra—ramrs | 1 3 —4 |0 10 2 1o
—trg—=re [0 1 =210 [r1—3ro—>r |0 1 =210
00 0 |0 00 0 |0
From this, if we set c¢3 = ¢, we must have ¢; = —%t and cp = 17115. Therefore, if we take z = 7, then ¢y = —5, ¢; = 11,
and c3 = 7 is one possible solution.
2 -1 3 0
11. If possible, find scalars c¢1, co and c3 not all zero such that ¢; | 3 | +¢o 2 +ec3| -1 | =10
1 5 -2 0
2 0 1 5 =210 ra—3ri—7s
Considering the associated homogeneous system, we have: | 3 —1 0O |r<rs| 3 2 —=1[0|7r3—2r —>r;
1 -210 2 -1 310
1 5 =210 1 5 -2 10 1 5 =210
0 =13 5 |0 | —gro—>r| 0 1 =310 |[rs+1lro—r3| 0 1 —gis 0
0 —-11 7|0 0 —-11 7 |0 00 3210

From this, if we see that the coefficient matrix is non-singular (its determinant in non-zero), so the trivial solution is
the only possible solution.

12. Let V be the set of all functions of the form f(x ) = reF , where 7, k are real numbers. Let @ be defined as rief1* @
roek2® = pipoeF1tk2)r Tot @ be defined as ¢ ® ref* = crek® for any real number c. Determine whether or not V is a
vector space. If it is, prove that it satisfies each part of the definition of a vector space. If not, show which properties
are not satisfied.

(a) Let r1eF1% and roef2® be in V. Then ref® @ ryef2® = ryrqef1+52)2  Notice that 179 € R and (k1 + k2) € R, so
V is closed under addition.

(1) Let @ = 7% and ¥ = r2€*® be in V. Then @ @ ¥ = 7eM% @ ryef2® = rirgeith2)z — (pop)elk2tk)z by
commutativity of real number multiplication and commutativity of real number addition.

Notice that T @ @ = rye*2® @ r1ef1% = rorye(F2 %) Hence @ & 7 = 7D 4.

(2) Let @ = rief1® i = r9eF2®, and @ = r3e¥® be in V. Then @ @ (¢ ® @) = r1e"% @ (roek?® @ rzefs®) = rief* @
rorzeF2 k) — g (popg)e(Fit(k2tks))z - Using associativity of real number addition and real number multiplication:
= (Tsz)T'ge((k1+k2)+k3)z = (ﬁ@ 17) S w

(3) We define 0 = 1¢% = 1¢% = 1. Notice that if @ = r1e**, then @ ® 0 = r1e"1® @ 19 = (1)1 102 = p chre —

= (1)(r1)e®tF) =12 @ rief® = 0 @ 4.

(4) Suppose @ = ref1® If vy # 0 and @ # () then we define —@ = e~ 1%, Notice that @ ® — = r1e"1% @ %e*klm =
1—e(k1 k)z — 1¢0 = (. Similarly, -7 ® @ = rlle ke g ef1? = E7’16( kitk)z — 10 = (. The negative of 0 is 0.

Notice that 1e® @ 1e? = (1)(1)e(0+9)* = 1¢0 = (. However, if r; = 0, then @ = 0. There is no way to define — in this
case, since 0 @ r1e® = 0 for any vector in V. Therefore, this property fails.

(b) Let @ = r1e*1* and ¢ € R. Then ¢ ® @ = ¢ ® r1e"* = crief®. Since cry is a real number, then V is closed under
scalar multiplication.



13.

(5) Let 4 € R and @ = 2¢%, ¥ = 3¢*. Then 40 (4@ ® ¥) = 4(2)(3)e1+1)* = 24¢%*,
However, 4 ®# =8e® and 4 © 7 =12e*, 50 4 O 4 B 4 O U = 8e® @ 12e* = 96e2*, so this property also fails.

(6) Let @ = e*. Then (2+3) ® @ = (2 + 3)e” = 5e. However, 2¢® @ 3e* == 6e**. Therefore, this property does not
hold.

(7) Let ¢,d € R and let @ = re*®. Then ¢ ® (d ® @) = ¢ ® (dr)ek® = c(dr)ek® = (ed)rek®, where the final equality uses
the associativity of real number multiplication. Thus this property holds.

(8) Consider 1 ® re** = 1re*® = re#*. Then this property holds.

Let V be the set of all ordered triples (z,y, z) where z,y and z are real numbers. Let @ be defined as (x1,y1,21) ®
(22,Y2,22) = (1 + 22, Y1 + Y2, 21 + 22) Let ® be defined as ¢ ® (z,y, z) = (cx, cy, cz) for any real number ¢. Determine
whether or not V is a vector space. If it is, prove that it satisfies each part of the definition of a vector space. If not,
show which properties are not satisfied.

(a) Let (x1,y1,21) and (22,y2, 22) be elements of V. Then (x1,y1,21) @ (22, Y2, 22) = (21 + 22,1 + Y2, 21 + 22). Since
the sum of any pair of real numbers is a real number, (1 + 22,1 + Y2, 21 + 22) is an ordered triple of real numbers.
Thus V is closed under addition.

(1) Let (x1,y1,21) and (x2,ys2, 22) be elements of V. Then (x1,y1,21) ® (22, Y2, 22) = (X1 + 22,¥1 + Y2, 21 + T2)
On the other hand, (x2,ys2,22) ® (z1,y1,21) = (2 + 21, Y2 + Y1, 22 + x1)

Using a specific counterexample, (2,3,4) @ (4,3,2) = (2+ 2,3+ 3,4+ 4) = (4,6,8), while (4,3,2) @ (2,3,4) =
(44+4,3+3,2+2)=(8,6,4). Therefore, @ is not commutative.

(2) Consider (1,2,3) and (4,5,6) and (7,8,9)
(1,2,3) ® [(4,5,6) @ (3,1,2)] = (1,2,3) ® (4+ 2,5+ 1,6 +3) = (1,2,3) @ (6,6,9) = (1 + 9,2 + 6,3+ 6) = (10,8, 9)
while [(1,2,3) @ (4,5,6)] @ (3,1,2) = (14 6,2+5,3+4) ®(3,1,2) = (1,7, 1) ®(3,1,2) = (T+2,7+1,7+3) = (9,8, 10)

Therefore, addition is not associative.

(3) Let G = (0,0,0). Then (z,y,2)®(0,0,0) = (z+0,y+0,240) = (z,y,2) and (0,0,0)&® (x,y, z) = (0+,0+y,0+2) =
(z,y, 2).
Therefore, this vector space does have a zero.

(4) Let (x,y, z) be a vector, and consider (z,y,2) ® (—z,—y, —x). Then (z,y,2) B (-2, —y,—z) = (z—z,y—y,z2—2) =
(0,0,0) = 0.

On the other hand, (—z, -y, —z) ® (z,y,2) = (-2 + 2,4y, —z + x) = (0,0,0) = 0. Therefore, every element has a
negative.

(b) Let (x,y, z) be a vector and r € R. Then r ® (z,y, 2) = (rz,ry,rz) is still an ordered triple of real numbers, so this
vector space is closed under scalar multiplication.

(5) Let (21,91, 21) and (z2,ys2, 22) be elements of V and r € R. Then r ® [(z1,y1,21) ® (T2,¥2,22)] =7 O (21 + 29,51 +
Y2, 21 + 22) = (r(x1 + 22),7(y1 + y2), (21 + x2)) = (rxy + rze, ry1 + ry2, rz1 + 1), where the last equality is due to
the distributive property of real numbers.

On the other hand, r ® (21,41, 21) B O (T2,Y2, 22)] = (rz1,7Y1,721) D (rae, rya, rze) = (rey +rze, ry1 + ry2, rz1 + ras)
Therefore, this distributive property holds.

(6) Consider 2,3 € R and (3,4,5) € V. Then (2+3) ® (3,4,5) =50 (3,4,5) = (15,20, 25).
On the other hand, 2 ® (3,4,5) @3 ® (3,4,5) = (6,8,10) ® (9,12,15) = (6 + 15,8 + 12,10 + 9) = (21, 20, 19)
Then this property is not satisfied.

(7) Consider ¢,d € R and (x,y,2) € V. Then (cd) ® (z,y, z) = ((ed)z, (cd)y, (cd)z).

On the other hand, ¢ ® (d ® (x,y,2)) = ¢ ® (dz,dy,dz) = (c(dzx),c(dy),c(dz)) = (ed(x), cd(y), cd(z)), where the last
equality uses the associativity of real number multiplication.

Then this property is satisfied.

(8) Notice that Consider (1) ® (z,y, 2) = ((1z,1y,1z) = (z,y, 2), so this property is satisfied.



14.

15.

16.

Let V be the set of real numbers. Let @ be defined as 7@ s = rs. Let ® be defined as c©r = ¢+ r for any real number
c. Determine whether or not V is a vector space. If it is, prove that it satisfies each part of the definition of a vector
space. If not, show which properties are not satisfied.

(a) Let r,s € R. Then r @& s = rs, which, by definition of real number multiplication, is a real number. Then V is
closed under .

(1) Let r,s € R. Then r & s = rs = sr = s @ r where the middle equality uses the commutativity of real number
multiplication.

(2) Let r,s,t € R. Thenr@® (s®t) =r @ (st) =r(st) =rs(t) = (r ®s) ®t. We use the associativity of real number
multiplication.

(3) Let r € R and define 0 = 1. Then r &0 = (1) = r = 1(r) = 0@ r. Hence this property holds.

(4) This property does not hold. If we take r = 0, then rs = 0s = 0 for any s € R, but 0 = 1. Hence r = 0 has no
negative.

(b) Let r € V and ¢ € R. Then ¢ ® r = ¢+ r. Since the real numbers are closed under addition, this vector space is
closed under ©.

(5) Let c=2,4=3 and ¥=4. Then c©® (i ® ¥ (

On the other hand, cO @B cOT=(24+3)®(2+4) =506 = (5)(6) = 30.
Hence this property does not hold.
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(6) Let c=2,d=3and @ =5. Then (c+d)©U=50
On the other hand, cOU®d O T =(24+5) B (3+5)
Hence this property does not hold.

(7)Let c=3,d=4,and @ =5. Then cO(dOU) =c®(4+5)=34+(4+5)=3+(9) =12.
However, (¢d) ® 4 =120 5 =12+ 5 = 17. Thus this property does not hold.

(8) Let r =5. Then 1-5 =1+ 5= 6. Hence this property does not hold.

Prove that a vector space has only one zero vector (that is, the zero of a vector space is unique).
Proof: Let V be a vector space and suppose that 0 and 0 are both zero vectors.

i for any @ € V. In

By definition of a zero vector, # 0 = 0® @ = @ for any @ € V. Similarly, t® 0 =0® @ =
s 0 = 0. Hence the zero vector

particular, 0 & 0 = 0 since 0 is a zero vector. But 0@ 0 = 0 since 0 is a zero vector. Thu
is unique.

Prove that in a vector space, —1 ® @ = —u for any vector @ € V.
Proof: Let V be a vector space and let # € V. Consider —1 ® .

Notice that —1 0@ @@ =—-1©4® 1 © @ by Property (8) of a vector space.
= (—1+41) ® @ by Property (6) of a vector space.

= 0 ® 4 by real number addition.

= 0 by part (a) of Theorem 4.2.

Similarly, t @ -1 04 =104 ® —1 ® u by Property (8) of a vector space.
= (14 (—1)) ® @ by Property (6) of a vector space.

= 0 ® 4 by real number addition.

= 4 by part (a) of Theorem 4.2.

Hence —i=-1014



17. Prove that in any vector space, for a given vector @, —(—u) = .
Proof: Let V be a vector space and let @ € V. Consider —(—1).
Using the result of problem 16 above, —i = —1 ® @. Then —(—4) = —(-10%) = -10 (-1 © 4).
Applying Property (7) of a vector space, -1 ® (-1 0 %) = ((-1)(-1)) 0d =10 4.
Then, applying Property (8) of a vector space, 1 ® @ = 4. Thus —(—) = 4.

x
18. Let V= R®> = | y | where z , y and z are real numbers, and @ and ® are the usual operations. Determine which of
z
the following are subspaces of V:

x
(a) Wy = y | :2e—y=z
z
[z Ty
Notice that since 2z — y = z, if 4, v € W1, then they have the form: @ = Y1 and ¥ = Y2
| 221 — 11 2x2 — Y2
1 T2 Ty + 22 1 Ty + T2
Then @ + v = Y1 + Y2 = Y1+ Y2 = Y1+ Y2 . Thus
221 —y1 229 — Yo 201 —y1 + 222 — Y2 | 2(z1 + 22) — (y1 + y2)
U+7T€ Wi.
X1 T T
Similarly, for any r € R, rd =r Y1 = Y1 = Y1 . Thus r4 € Wj.
2r1 — %1 (221 —y1) 2rey —ry
Hence W is a subspace of V = R3.
x
(b) Wy = y |tx+y—2=0
z
T
Notice that since x +y — z = 0, then = + y = z, so if ¥, v € Wy, then they have the form: 4 = Y1 and
1+
T2
U= Y2
T2 + Y2
T1 T2 Ty + 22 1+ T2
Then 470 = Y1 + Y = Y1 + Yo = Y1 + Yo . Thus u+v € Ws.
z1+ 4% T2+ Y2 z1+y1 + 22+ Y2 (21 + 22) + (y1 + y2)
X1 T rTry1
Similarly, for any r € R, rd =7 Y1 = Y1 = Y1 . Thus rud € Wa.
1+ r(r1 +y1) rT1 4+ TY1
Hence W is a subspace of V = R3.
x
©Wo={ |y |:aty=1
z
19. Let V = M33. Determine which of the following are subspaces of V.
1 0 1 0 1
Notice thatifu = | 0 | andv = | 1 |, thend,v € W3. However,i+v=| 0 [+ 1 | =| 1 |,butl4+1=2+#1,
1 1 1 1 1

so the condition for being in W3 is not satisfied.



Since W3 is not closed under addition, it is not a subspace of R3.

(a) Wi is the set of all 3 x 3 scalar matrices.

kE 0 O
Recall that a scalar 3 x 3 matrix is any matrix of the form: | 0 k& 0 | for some k € R.
0 0 k
a 0 0 b 0 0 a+b 0 0
Consider the sum of two scalar matrices: 0 a O|+]|0 b 0] = 0 a+b 0 . Since a + b
0 0 a 0 0 b 0 0 a+b
is a constant in R, then W7 is closed under addition.
a 0 0 ra 0 O
Next, consider a scalar multiple of a scalar matrix: | 0 a 0 | = 0 ra O |. Since ra is a constant in
0 0 a 0 0 ra

R, then W is also closed under scalar multiplication.
Hence W7 is a subspace of M33

W5 is the set of all non-singular 3 x 3 matrices.

Recall that the zero matrix O is singular (it has determinant zero). Let A be a non-singular 3 x 3 matrix. Since
0® A =0, Ws is not closed under scalar multiplication, and hence is not a subspace of Msgs.

W3 is the set of all symmetric 3 X 3 matrices.

a b ¢
Recall that a symmetric 3 x 3 matrix is any matrix of the form: | b d e
c e f
al b1 C1 ag b2 Co a1 + as b1 + b2 c1+co
Consider the sum of two symmetric matrices: by di er |+| by do ey | = | by+by di+dy el +es
cp e fi c2 ez fo citec ertex fitfo
Notice that the resulting matrix is symmetric. Hence Wj is closed under addition.
ar by ra; rby re
Next, consider a scalar multiple of a symmetric matrix: v | by di e; | = | rby rdy re; |. Notice that the
e oer fi rcy rer rfi

resulting matrix is symmetric. Hence W3 is also closed under scalar multiplication.

Hence W3 is a subspace of M3

20. Let V be C(—o00, 00) with the usual operations. Determine which of the following are subspaces of V.

(a)

W7 is the set of all continuous functions such that f(0) = 0.

Let f and g be continuous functions satisfying f(0) = 0 and ¢g(0) = 0. Consider (f + ¢)(¢). As proven in Calculus
I, the sum of two continuous functions is continuous. Moreover, (f 4+ ¢)(0) = f(0) + g(0) =0+ 0 = 0. Hence W,
is closed under addition.

Next, let ¢ € R and consider ¢f(t). As proven in Calculus I, a scalar multiple of a continuous function is continuous.
Moreover, ¢f(0) = ¢(0) = 0. Hence W7 is closed under scalar multiplication. Thus W is a subspace of C(—o0, 00).

W3 is the set of all continuous function such that f(0) = 1.

Let f(t) =t +1. Then f(0) = 0% +1=1. Let g(t) = 1. Then g(0) = 1. However, (f + ¢)(0) =1+ 1 = 2. Hence
f + g is not in Wa. Since W5 is not closed under addition, W5 is not a subspace of C'(—o00,00).

W3 is the set of all differentiable functions.

First and foremost, recall that, as proven in Calculus I, if a function f(t) is differentiable, then f(¢) is also
continuous, so W3 C C(—00, 00).



Let f(t) and g(t) be differentiable functions. As proven in Calculus I, 4 (f(t) + g(t)) = f'(t) + ¢'(t). Therefore,
the sum of two differentiable functions is differentiable. Similarly, & (cf(t)) = cf’(t), so a scalar multiple of a
differentiable function is differentiable. Since the set of differentiable functions is closed under both addition and
scalar multiplication, then W3 is a subspace of C(—o0, 00).

(d) Wy is the set of all constant functions.

Let f(t) = a and ¢(t) = b be constant functions. Recall that constant functions are continuous on R (they are
differentiable — alternatively, they are zero degree polynomials). Notice that (f 4+ g)(t) = a + b, which is still a
constant function. Also, if » € R, then rf(t) = ra which is a constant function. Thus Wy is closed under both
addition and scalar multiplication. Hence Wy is a subspace of C(—0o0,00).

-2

21. Letvlz{_g}andvgz{ 4

} . Which of the following vectors are linear combinations of v; and vy?

Let v = [ Z ] be a vector and suppose that ¢ is a linear combination of v1 and v3. We consider the following matrix

related to the linear system v = cyv7 + v3:
1_2ar+2r%r 1 -2 a
-2 4 |b|? L777210 0 | 2040

This system has a solution if and only if 2a 4+ b = 0.

(a) [ —iz ]

Since 2(6) + (—12) = 0, this vector is a linear combination of ¥ and v3. In fact, ¥ = 6v3.

3
o | %]
Since 2(3) + (—=5) = 1 # 0, this vector is not a linear combination of v and v3.
o]

Since 2(0) + (0) = 0, this vector is a linear combination of v and v3. In fact, ¥ = 007 (we are being a bit silly here
— 0 is a linear combination of any set of vectors since we can take the scalars to be all zeros)

2 -1 3
22. Letvy = | 3 |, v = 2 and v3 = | —1 |. Which of the following vectors are linear combinations of vy, v and
1 3 —4

’U37

2 1 3 |a 1 3 —4]e¢
3 2 —1|b|r<rs| 3 2 —11|b
1 3 —4|c 2 -1 3 |a
3 1 3 -4 c 1 3 -4 c
TQ—OT1—7T2
rg—2ry —1r3 | 0 =7 11 |b—3¢c |ro—r3—rg| 0 =7 11 b—3c
0 -7 11 |a—2¢c 0 0 0 |b—a—c

From this, we see that this system has a solution if and only if b —a — ¢ = 0. That is, if b =a + c.

(=]

(a)



Using the condition proved above, we have a =3, b =6, and ¢ = 3, so a + ¢ = 3+ 3 = 6 = b. Hence this vector is
a linear combination of v] and v5.

3
b) | 4
2

Using the condition proved above, we have a =3, b =4, and ¢ = 2, so a+ ¢ =3+ 2 =4 # b. Hence this vector is
not a linear combination of v7 and v53.

0
(c) | 0
0

Using the condition proved above, we have a =0, b =0, and ¢ =0, so a + ¢ =0+ 0 = 0 = b. Hence this vector is
a linear combination of v and v5.

23. If possible, find a non-zero vector in the null space of each of the following vectors:

@5 3

Consider the matrix associated with the homogeneous system Az = 0:

3 —1]0 1 =510 1 =510 4 1 -510
|:2 40:|7“1—’I“2—>7“1|:2 40:|T2—2T1—>7“2|:0 140:|14T2—)7“2|:0 10:|7“1+5T2—)
n 100
0 110

Then this system has only the trivial solution. That is, 0 is the only vector in the null space of [ g ;1 }
[ -1 2

N ]

Consider the matrix associated with the homogeneous system Az = 0:

'—120+2_> -1 200 _ I 2|0

2 4o |TEET2L 0 ojo TP T 0 0 |0

Then this system has solutions of the form: a — 2b = 0. For example, if b = 1, then a = 2. Notice that

[ -1 2 2 0 2. . -1 2
2 _4][1]{O}SO[1]1smthenullspaceof{ 9 _4}

-3 0 4
(c) 2 -1 0
5 0 -2

-3 0 4|0 11 =407 o, 1 4]0
2 -1 0 0 — T —T9 — T 2 -1 0 0 7’3—57“1 — T3 0 -3 8 0

| 5 0 —-210 5 0 =210 0O 5 1810
7%7‘2*}7"2

r3 — 57”2 — T3

O O =
O = =
=
w‘%\mﬂk
o O O

Notice that we can see that the determinant of the coeflicient matrix is non-zero, so this system has only the
trivial solution.

24. Describe the set of all vectors in the null space of the matrix A = 3 0 -1



-2 1 410 1 1 3
ro—3r1—r
Considering the associated homogeneous system, we have: 3 0 =10 |ro+r1—=>7r | 3 0 —=1|0 | rs = rllz>2r3
1 1 3|0 11 310
1 1 3|0 11 3]0 10 —%10
1 10 10
0 -3 =100 — 372 — Ty 0 1 3 0 T — Ty —T1 0 1 3 0
0 0 0 |0 0 0 010 0 0 010
From this, if we set z = t, we must have x = %t and y = —%t. Thus the null space of this matrix is all vectors of the
it
10
form: | —<¢ | for any t € R.



