Math 327 Exam 3 Review Sheet

Section 3.4: The Inverse of a Matrix

• Know the statement and proof of Theorem 3.11

• Know the definition of the Adjoint of an $n \times n$ matrix A and be able to use cofactors to compute the adjoint of a given matrix.

• Know the statement of Theorem 3.12 $[A(\text{adj } A) = (\text{adj } A)A = \det(A)I_n].$

• Be able to use the adjoint of a non-singular matrix A to find A^{-1} .

• Know the statement of Corollary 3.4.

Sections 3.5 and 3.6: Other Applications of Determinants, Determinants from a Computational Point of View

• Know the statement of Theorem 3.13 (Cramer's Rule).

• Be able to use Cramer's Rule to find the solution of a linear system of n equations in n unknowns whose coefficient matrix in non-singular.

• Know that Cramer's Rule cannot be applied to a linear system whose coefficient matrix is not square or one whose coefficient matrix is singular.

• Understand that using permutations directly and using the cofactor expansion are computationally inefficient methods of computing the determinant of a matrix, while using Gaussian elimination is much more efficient. From this, using Gaussian Elimination or the Gauss-Jordan method is more computationally efficient than using Cramer's rule to solve a system of equations.

Section 4.1: Vectors in the Place and in 3-Space

• Understand the rectangular coordinate systems for both 2 and 3 dimensional space including the origin O, the definition of the x, y, and z-axes, plotting points in both 2 and 3-dimensional space, and the difference between right-handed and left-handed coordinate systems in 3-space.

• Understand the definition of scalars and vectors. Be able to graph a vector as a directed line segment and be able to identify the head and tail of a vector.

• Understand the definition of the magnitude of a vector, the zero vector, the components of a vector, and equality of two vectors.

• Be able to find sums, differences, and scalar multiples of vectors. Also be able to determine whether or not a given vector is a linear combination of other given vectors.

Section 4.2: Vector Spaces

• Memorize the definition of a real vector space as given in definition 4.4. In particular, know what it means for a set to be *closed* under a given operation.

• Memorize the key examples of vector spaces discussed in class, including how vectors are defined and how the operations \oplus and \odot are defined for each example. Also know the standard notation used to represent these example vector spaces $(\mathbb{R}^n, \mathbb{R}_n, \mathbb{M}_{mn}, \mathbb{P}, \mathbb{P}_n, \mathbb{C}(-\infty, \infty))$.

• Be able to prove that a given example is a vector space by verifying that it satisfies the properties from definition 4.4.

• Be able to prove that a given example is not a vector space by providing specific counterexamples that show that one or more of the properties from definition 4.4 are not satisfied.

• Know the statement of Theorem 4.2 and be able to prove one or more of these properties.

• Know that in a vector space, the vector $\vec{0}$ is unique and that for a given vector \vec{u} , its negative $-\vec{u}$ is unique. Also know how to prove these facts.

Section 4.3: Subspaces

- Memorize the definition of a subspace of a vector space.
- Know the statement of Theorem 4.3 and be able to apply it to show that a subset of a vector space is a subspace.

• Be able to show that a given subset of a vector space is not a subspace by providing a specific counterexample to one of the closure properties.

- Know that every vector space has at least two subspaces: the space itself and the zero subspace.
- Know the definition of a linear combination of vectors in a given vector space.
- Be able to determine whether or not a given vector is a linear combination of a set of vectors in a given vector space.
- Know the definition of the null space of a matrix (the solution space of the associated homogeneous system of equations).

• Be able to show that a given vector or a collection of vectors is in the null space of a matrix. Also be able to describe all vectors that are in the null space of a given matrix.