- 1. Let $V = P_3$ and let $S = \{t^3 1, t^2 + 1, t + 1\}$. Determine whether or not each of the following are in the span of S:
 - (a) $3t^3 + 4t^2 2t 1$ (b) $5t^3 + 3t^2 2t 3$
- 2. Let $V = M_{22}$ and let $S = \left\{ \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$. Determine whether or not each of the following are in the span of S:
 - (a) $\begin{bmatrix} 7 & -1 \\ 4 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} 7 & 1 \\ -1 & 7 \end{bmatrix}$
- 3. Which of the following sets span R_3 ?
 - (a) $S = \{ \begin{bmatrix} -1 & 4 & 5 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 3 & -2 \end{bmatrix} \}$ (b) $S = \{ \begin{bmatrix} 1 & -2 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 1 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 5 & -10 \end{bmatrix} \}$ (c) $S = \{ \begin{bmatrix} 2 & -3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 3 \end{bmatrix}, \begin{bmatrix} 2 & -4 & -5 \end{bmatrix}, \begin{bmatrix} 3 & -4 & 3 \end{bmatrix} \}$
- 4. Describe the subspace of \mathbb{R}^3 spanned by the set $S = \{ \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \}$
- 5. For each of the following sets of vectors, determine whether or not the set is linearly independent. For those that are dependent, write one of the vectors as a linear combination of the others.
 - (a) $S = \{ \begin{bmatrix} 2 & -3 \end{bmatrix}, \begin{bmatrix} -1 & 3 \end{bmatrix}, \begin{bmatrix} 2 & -4 \end{bmatrix} \}$ (b) $S = \{t^2 - t + 1, 2t^2 + 5, 2t + 3\}$
 - (c) $S = \{t^2 t, 2t^2 + 5, 2t + 3\}$
- 6. For which values of c are the vectors $t^2 + 2t + 1$, 2 t, and $t^2 + t + c^2$ linearly independent?
- 7. Suppose that $S = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is linearly independent. Let $T = \{\vec{w_1}, \vec{w_2}, \vec{w_3}\}$, where $\vec{w_1} = \vec{v_1} \vec{v_2}, \vec{w_2} = \vec{v_1} + \vec{v_2} + \vec{v_3}$, and $\vec{w_3} = 2\vec{v_1} + \vec{v_3}$. Determine whether or not T is linearly independent.
- 8. Prove the following: If $S = {\vec{v_1}, \vec{v_2}}$ is a linearly independent set and $\vec{v_3}$ is not in the span of S, then $T = {\vec{v_1}, \vec{v_2}, \vec{v_3}}$ is linearly independent.
- 9. Let S_1 and S_2 be finite subsets of a vector space V. Suppose that $S_1 \subset S_2$ and that S_1 is linearly independent. Must S_2 be linearly independent?
- 10. Determine which of the following sets form a basis for R_3 . For those that are not, state which part(s) of the definition of a basis are not satisfied.

(a)
$$S_1 = \{ \begin{bmatrix} 4 & -1 & 5 \end{bmatrix}, \begin{bmatrix} -2 & 3 & 1 \end{bmatrix} \}$$

- (b) $S_2 = \{ \begin{bmatrix} 4 & 3 & 5 \end{bmatrix}, \begin{bmatrix} 2 & 3 & -1 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 6 \end{bmatrix} \}$
- (c) $S_3 = \{ \begin{bmatrix} -1 & 5 & 3 \end{bmatrix}, \begin{bmatrix} 3 & -2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 3 & -2 \end{bmatrix} \}$
- (d) $S_4 = \{ \begin{bmatrix} 5 & 3 & -1 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 0 & -2 \end{bmatrix}, \begin{bmatrix} 4 & 1 & -3 \end{bmatrix} \}$
- 11. (a) As above, let $S_1 = \{ \begin{bmatrix} 4 & -1 & 5 \end{bmatrix}, \begin{bmatrix} -2 & 3 & 1 \end{bmatrix} \}$. Find a set T such that $S_1 \subset T$ and T is a basis for R_3 .
 - (b) As above, let $S_2 = \{ \begin{bmatrix} 4 & 3 & 5 \end{bmatrix}, \begin{bmatrix} 2 & 3 & -1 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 6 \end{bmatrix} \}$. Either express the vector $\vec{v} = \begin{bmatrix} 5 & -1 & 3 \end{bmatrix}$ as a linear combination of elements in S_2 or show that this is not possible.
 - (c) As above, let $S_3 = \{ \begin{bmatrix} -1 & 5 & 3 \end{bmatrix}, \begin{bmatrix} 3 & -2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 3 & -2 \end{bmatrix} \}$. Either express the vector $\vec{v} = \begin{bmatrix} 5 & -1 & 3 \end{bmatrix}$ as a linear combination of elements in S_2 or show that this is not possible.
 - (d) As above, let $S_4 = \{ \begin{bmatrix} 5 & 3 & -1 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 0 & -2 \end{bmatrix}, \begin{bmatrix} 4 & 1 & -3 \end{bmatrix} \}$. Find a set $T \subset S_4$ so that T is a basis for R_3 .
- 12. Let W be the subspace of P_3 spanned by the set $S = \{t^3 t^2 + 2t 1, t^3 t + 7, t^2 3t + 8, t^2 + 2t 1\}$. Find a basis for W and find the dimension of W.

- 13. Find a basis for each of the following spaces. Also find the dimension of each space.
 - (a) The set of all cubic polynomials of the form $at^3 + bt^2 + ct + d$ satisfying a 2b + c = d.
 - (b) The set of all vectors of the form $\begin{bmatrix} a-b+c & 2a-b & b+3c & 2c-5a & a+b+c \end{bmatrix}$
 - (c) The set of all symmetric 4×4 matrices.
- 14. Prove Theorem 4.8
- 15. Prove Corollary 4.4

16. Given the homogeneous linear system
$$\begin{cases} x_1 + 2x_2 - x_3 + 4x_4 = 0\\ 3x_1 - 2x_2 + 5x_3 - x_4 = 0\\ 4x_1 + x_2 - x_3 = 0 \end{cases}$$
Find a basis for the solution space of this system.

- 17. Given the homogeneous linear system $\begin{cases} 2x_1 x_2 3x_3 + x_4 = 0\\ 3x_1 + x_2 5x_3 + 2x_4 = 0\\ x_1 3x_2 x_3 = 0 \end{cases}$ Find a basis for the solution space of this system.
- 18. Find a basis for the null space of the matrix $A = \begin{bmatrix} 3 & -1 & 0 & 2 & 4 \\ 4 & 2 & -1 & 0 & 3 \\ 0 & 0 & 2 & 1 & -1 \end{bmatrix}$
- 19. For each of the following matrices, find all real numbers λ such that the homogeneous system $(\lambda I_n A)\vec{x} = \vec{0}$ has a nontrivial solution.

(a)
$$A = \begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

20. Let $S = \{ \begin{bmatrix} 1 & 2 & -4 \end{bmatrix}, \begin{bmatrix} 3 & -1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -3 & 0 \end{bmatrix} \}$. If $\vec{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, find $[\vec{v}]_S$.

21. Let
$$S = \{t^2 - 3t + 2, t^2 - 4, 2t - 1\}$$
. If $\vec{v} = t^2 - 2t + 1$, find $[\vec{v}]_S$.

22. Let $S = \{t^2 - 3t + 2, t^2 - 4, 2t - 1\}$ and suppose $[\vec{v}]_S = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$. Find \vec{v} .

23. Let $S = \{t^2 - 3t + 2, t^2 - 4, 2t - 1\}$, let $T = \{t^2 - t, t^2 - 1, t + 1\}$, and let $\vec{v} = 2t^2 + t - 3$.

- (a) Find $[\vec{v}]_S$ directly.
- (b) Find $[\vec{v}]_T$ directly.
- (c) Find the transition matrix $P_{S\leftarrow T}$.
- (d) Use the transition matrix $P_{S\leftarrow T}$ to compute $[\vec{v}]_S$.