
Math 327
Exam 5 - Practice Problem Solutions

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

(a)





1 −2 5 4
2 1 −3 7
1 −7 18 5





Since we want a basis for the row space consisting of rows of the original matrix, we will take AT and put it into
reduced row echelon form. The position of the 1’s in the reduced row echelon form indicate the rows of A that
form a basis for the row space. We omit the details of the row reduction process.

AT =









1 2 1
−2 1 −7
5 −3 18
4 7 5









→









1 0 3
0 1 −1
0 0 0
0 0 0









From the reduced form above, the following is a basis for the row space:
{[

1 −2 5 4
]

,
[

2 1 −3 7
]}

(b)













1 3 −4 1
0 4 −5 2
2 −1 1 5
2 3 −4 7
3 2 −3 6













Since we want a basis for the row space consisting of rows of the original matrix, we will take AT and put it into
reduced row echelon form. The position of the 1’s in the reduced row echelon form indicate the rows of A that
form a basis for the row space. We omit the details of the row reduction process.

AT =









1 0 2 2 3
3 4 −1 3 2
−4 −5 1 −4 −3
1 2 5 7 6









→









1 0 0 0 1
0 1 0 1 0
0 0 1 1 1
0 0 0 0 0









From the reduced form above, the following is a basis for the row space:

{[

1 3 −4 1
]

,
[

0 4 −5 2
]

,
[

2 −1 1 5
]}

2. Find a basis for the column space of each of the matrices from problem 1. Your basis should consist of columns of the
original matrix.

(a) Since we want a basis for the column space consisting of columns of the original matrix, we will take A and put
it into reduced row echelon form. The position of the 1’s in the reduced row echelon form indicate the columns of
A that form a basis for the row space. We omit the details of the row reduction process.

A =





1 −2 5 4
2 1 −3 7
1 −7 18 5



 →





1 0 − 1

5

18

5

0 1 − 13

5
− 1

5

0 0 0 0





From the reduced form above, the following is a basis for the column space:











1
2
1



 ,





−2
1
−7











(b) Since we want a basis for the column space consisting of columns of the original matrix, we will take A and put
it into reduced row echelon form. The position of the 1’s in the reduced row echelon form indicate the columns of
A that form a basis for the row space. We omit the details of the row reduction process.

A =













1 3 −4 1
0 4 −5 2
2 −1 1 5
2 3 −4 7
3 2 −3 6













→













1 0 0 6
0 1 0 33
0 0 1 26
0 0 0 0
0 0 0 0















From the reduced form above, the following is a basis for the column space:



































1
0
2
2
3













,













3
4
−1
3
2













,













−4
−5
1
−4
−3



































3. Find the rank of each of the matrices from problem 1.

(a) From the work done above, we see that rank A = 2.

(b) From the work done above, we see that rank A = 3.

4. Find a basis for the null space of each of the matrices from problem 1.

(a) To find a basis for the null space, we need to row reduce the matrix representing the related homogeneous system
of equations. Since we already put A in reduced row echelon form, we can just add an augmented column of zeros
to the reduced row echelon form of A:




1 0 − 1

5

18

5
0

0 1 − 13

5
− 1

5
0

0 0 0 0 0





From this, we see that x1 = 1

5
x3 −

18

5
x4 and x2 = 13

5
x3 +

1

5
x4. Let x3 = s and x4 = t.

Then elements of the null space have the form:









1

5
s− 18

5
t

13

5
s+ 1

5
t

s

t









. Therefore, the following set is a basis for the null

space:























1

5
13

5

1
0









,









− 18

5
1

5

0
1























(b) find a basis for the null space, we need to row reduce the matrix representing the related homogeneous system of
equations. Since we already put A in reduced row echelon form, we can just add an augmented column of zeros
to the reduced row echelon form of A:












1 0 0 6 0
0 1 0 33 0
0 0 1 26 0
0 0 0 0 0
0 0 0 0 0













From this, we see that x1 = −6x4 and x2 = −33x4 and x3 = −26x4. Let x4 = t.

Then elements of the null space have the form:









−6t
−33t
−26t
t









. Therefore, the following set is a basis for the null

space:























−6
−33
−26
1























5. Use the determinant to determine whether or not each of the following matrices has rank 3:

(a)





−2 3 1
0 −1 2
2 1 6





Notice that det(A) = 12 + 12 + 0− (−2)− 0− (−4) = 12 + 12 + 2 + 4 = 30.

Since det(A) 6= 0, A is invertible, and hence reduces to I3. Thus rank A = 3.



(b)





−2 3 1
0 4 7
2 1 6





Notice that det(A) = −48 + 42 + 0− (8)− 0− (−14) = −48 + 42− 8 + 14 = 0.

Since det(A) = 0, A is singular and its reduced form has at least one row of zeros. Thus rank A < 3.

6. Use the rank of the coefficient matrix to determine whether or not each of the following homogeneous systems have a
non-trivial solution.

(a) A~x = ~0 if A =









5 −1 2 4
2 −3 0 1
1 −5 3 7
0 2 −3 1









We find the rank of A by putting A into reduced row echelon form:

A =









5 −1 2 4
2 −3 0 1
1 −5 3 7
0 2 −3 1









→









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Notice that A has rank 4, so A has nullity 0. That is, the related homogeneous system of equations has only the
trivial solution.

(b) A~x = ~0 if A =









5 −1 2 4
2 −3 0 1
1 −5 3 7
0 −7 6 13









We find the rank of A by putting A into reduced row echelon form:

A =









5 −1 2 4
2 −3 0 1
1 −5 3 7
0 −7 6 13









→









1 0 0 − 1

53

0 1 0 − 17

53

0 0 1 95

53

0 0 0 0









Notice that A has rank 3, so A has nullity 1. That is, there are non-trivial solutions to the related homogeneous
system of equations.

7. Suppose that A is a 4× 7 matrix.

(a) What is the maximum rank of A?

Since A has 4 rows and 7 columns, the largest identity matrix that fits inside A is I4. Therefore, the maximum
rank of A is 4.

(b) Could the columns of A be linearly independent? Justify your answer.

No. Since there are 7 columns and the maximum rank of A is 4, some of the columns must be linear combinations
of the other columns.

(c) Could the rows of A be linearly independent? Justify your answer.

Yes. If A attains its maximum rank of 4, then the rows would be linearly independent.

(d) If the rank of A is 3, find the nullity of A.

If the rank of A is 3, then the reduced row echelon form of A has three 1’s. Then there must be 4 free variables,
so the nullity of A is 4.

(e) If the rank of A is 3, find the nullity of AT .

If the rank of A is 3, then the rank of AT is also 3. Then the reduced row echelon form of AT also has three 1’s.
Since AT has 7 rows and 4 columns, there is one free variable, so AT has nullity 1.



8. Let A be an n× n matrix. Show that rank A = n if and only if the columns of A are linearly independent.

Let A be an n×n matrix and first suppose that rank A = n. Then A is row equivalent to In. Therefore, every column
of A is a vector in a basis for the column space of A. Thus the columns of A are linearly independent.

Now, let A be an n×n matrix and suppose that the columns of A are linearly independent. By definition, the columns
of A span the column space of A. Since these columns are linearly independent, the n columns of A form a basis for
the column space of A. Then A has column rank n. However, the column rank of A is equal to the rank of A. Thus A
has rank n.

9. Consider the following functions from R3 → R2:

L1









u1

u2

u3







 =

[

u1 − u2

u3

]

L2









u1

u2

u3







 =

[

u1 − u2

0

]

L3









u1

u2

u3







 =

[

u1 − u2

1

]

L4









u1

u2

u3







 =

[

u1 − u2

u2
3

]

(a) Determine whether or not each of these functions is a linear transformation. Justify your answer.

i. L1









u1

u2

u3







 =

[

u1 − u2

u3

]

Notice that L1(~u)+L1(~v) = L1









u1

u2

u3







+L1









v1
v2
v3







 =

[

u1 − u2

u3

]

+

[

v1 − v2
v3

]

=

[

u1 − u2 + v1 − v2
u3 + v3

]

=

[

(u1 + v1)− (u2 + v2)
(u3 + v3)

]

Similarly, L1(~u+ ~v) = L1









u1 + v1
u2 + v2
u3 + v3







 =

[

(u1 + v1)− (u2 + v2)
(u3 + v3)

]

= L1(~u) + L1(~v). Hence property (a)

holds.

Next, notice that L1(c · ~u) = L1









cu1

cu2

cu3







 =

[

cu1 − cu2

cu3

]

= c ·

[

u1 − u2

u3

]

= c · L1(~u). Thus property

(b) also holds. Therefore, L1 is a linear transformation.

ii. L2









u1

u2

u3







 =

[

u1 − u2

0

]

Notice that L2(~u)+L2(~v) = L2









u1

u2

u3







+L2









v1
v2
v3







 =

[

u1 − u2

0

]

+

[

v1 − v2
0

]

=

[

u1 − u2 + v1 − v2
0 + 0

]

=

[

(u1 + v1)− (u2 + v2)
0

]

Similarly, L2(~u+ ~v) = L2









u1 + v1
u2 + v2
u3 + v3







 =

[

(u1 + v1)− (u2 + v2)
0

]

= L2(~u) + L2(~v). Hence property (a)

holds.

Next, notice that L2(c · ~u) = L2









cu1

cu2

cu3







 =

[

cu1 − cu2

0

]

= c ·

[

u1 − u2

0

]

= c · L2(~u). Thus property

(b) also holds. Therefore, L2 is a linear transformation.

iii. L3









u1

u2

u3







 =

[

u1 − u2

1

]



Notice that L3









0
0
0







 =

[

0
1

]

6=

[

0
0

]

By Theorem 6.1(a), the image of ~0 under any linear transformation must be the zero vector. Hence L3 is not
a linear transformation.

iv. L4









u1

u2

u3







 =

[

u1 − u2

u2
3

]

Notice that 3 · L4









1
1
1







 = 3 ·

[

1− 1
12

]

= 3 ·

[

0
1

]

=

[

0
3

]

On the other hand, L4



3 ·





1
1
1







 = L4









3
3
3







 =

[

3− 3
32

]

=

[

0
9

]

6=

[

0
3

]

Therefore, L4 is not a linear transformation.

(b) For each Li this is a linear transformation, find a matrix representing the linear transformation.

i. L1









u1

u2

u3







 =

[

u1 − u2

u3

]

Notice that L1









1
0
0







 =

[

1
0

]

, L1









0
1
0







 =

[

−1
0

]

, and L1









0
0
1







 =

[

0
1

]

Then, taking these images of the columns of our matrix, the following matrix represents L1: A =

[

1 −1 0
0 0 1

]

ii. L2









u1

u2

u3







 =

[

u1 − u2

0

]

Notice that L2









1
0
0







 =

[

1
0

]

, L2









0
1
0







 =

[

−1
0

]

, and L2









0
0
1







 =

[

0
0

]

Then, taking these images of the columns of our matrix, the following matrix represents L2: A =

[

1 −1 0
0 0 0

]

(c) For each Li this is a linear transformation, find the kernel and range of the linear transformation.

i. L1









u1

u2

u3







 =

[

u1 − u2

u3

]

Notice that to be in ker L1, we must have u1 = u2 and u3 = 0. Therefore, ker L1 =











t

t

0



 : t ∈ R







.

To find the range, notice that if

[

a

b

]

∈ R2, then if we take u1 = a, u2 = 0 and u3 = b, then L1









a

0
b







 =

[

a

b

]

. Hence L1 is onto. That is, rangeL1 = R2.

ii. L2









u1

u2

u3







 =

[

u1 − u2

0

]

Notice that to be in ker L2, we must have u1 = u2, and u3 can be anything. Therefore, ker L2 =











s

s

t



 : s, t ∈ R







.



Although this was not asked, one should notice that the kernel of L1 has dimension 1, while the kernel of L2

has dimension 2.

To find the range, notice that if

[

a

b

]

∈ R2, then we must have b = 0. If we take u1 = a, u2 = 0 and u3 = b,

then L2









a

0
b







 =

[

a

0

]

. Hence rangeL2 =

{[

a

0

]

: a ∈ R

}

.

10. Suppose that L is a linear transformation with:

L









1
1
1







 =





1
−1
0



, L









1
0
1







 =





0
1
−2



, and L









0
0
1







 =





3
0
0





We will actually start by doing part (b):

(b) Find the standard matrix representing this linear transformation.

Notice that L









0
1
0







 = L









1
1
1



−





1
0
1







 =





1
−1
0



−





0
1
−2



 =





1
−2
2





Similarly, L









1
0
0







 = L









1
0
1



−





0
0
1







 =





0
1
−2



−





3
0
0



 =





−3
1
−2





From this, the matrix representing this linear transformation is: A =





−3 1 3
1 −2 0
−2 2 0





(a) Find L









5
−3
2







.

Using the matrix we found in part (b), L









5
−3
2







 =





−3 1 3
1 −2 0
−2 2 0









5
−3
2



 =





−12
11
−16





(c) Determine whether or not L is one-to-one.

Notice that det(A) = 0+0+6−12−0−0 = −6. Since det(A) 6= 0, then ker A = {~0}. Hence L is one-to-one. (Although
this was not asked, you should notice that since L is a transformation from R3 to R3, since L is one-to-one, it is also
onto).

11. Let L









u1

u2

u3







 =

[

u1 + u2 + u3

0

]

(a) Prove that L is a linear transformation.

Notice that L(~u) + L(~v) = L









u1

u2

u3







+ L









v1
v2
v3







 =

[

u1 + u2 + u3

0

]

+

[

v1 + v2 + v3
0

]

=

[

u1 + u2 + u3 + v1 + v2 + v3
0 + 0

]

=

[

(u1 + v1) + (u2 + v2) + (u3 + v3)
0

]

Similarly, L(~u+ ~v) = L









u1 + v1
u2 + v2
u3 + v3







 =

[

(u1 + v1) + (u2 + v2) + (u3 + v3)
0

]

= L(~u) + L(~v). Hence property

(a) holds.



Next, notice that L(c · ~u) = L









cu1

cu2

cu3







 =

[

cu1 + cu2 + cu3

0

]

= c ·

[

u1 + u2 + u3

0

]

. Thus property (b) also

holds. Therefore, L is a linear transformation.

(b) Show that L is not one-to-one and find a basis for ker L.

To be in ker L, we need u1 + u2 + u3 = 0. That is, we must have u1 = −u2 − u3. Let u2 = s and u3 = t.

Then ker L =











−s− t

s

t



 : s, t ∈ R







.

Therefore, the following set is a basis for ker L:











−1
1
0



 ,





−1
0
1











.

Note that since ker, L 6= {~0}, L is not one-to-one.

(c) Determine whether or not L is onto.

Notice that every element or the range of L is of the form

[

u1 + u2 + u3

0

]

From this, we see that

[

1
1

]

is not in the range of L. Hence L is not onto.

12. Let L









u1

u2

u3







 =

[

u1 + u2

u3 − u2

]

(a) Prove that L is a linear transformation.

Notice that L(~u)+L(~v) = L









u1

u2

u3







+L









v1
v2
v3







 =

[

u1 + u2

u3 − u2

]

+

[

v1 + v2
v3 − v2

]

=

[

u1 + u2 + v1 + v2
u3 − u2 + v3 − v2

]

=

[

(u1 + v1) + (u2 + v2)
(u3 + v3)− (u2 − v2)

]

Similarly, L(~u+ ~v) = L









u1 + v1
u2 + v2
u3 + v3







 =

[

(u1 + v1) + (u2 + v2)
(u3 + v3)− (u2 + v2)

]

= L(~u) + L(~v). Hence property (a) holds.

Next, notice that L(c · ~u) = L









cu1

cu2

cu3







 =

[

cu1 + cu2

cu3 − cu2

]

= c ·

[

u1 + u2

u3 − u2

]

. Thus property (b) also holds.

Therefore, L is a linear transformation.

(b) Show that L is not one-to-one and find a basis for ker L.

To be in ker L, we need u1 + u2 = 0 and u3 − u2 = 0. That is, we must have u1 = −u2 and u3 = u2. Let u2 = t.

Then ker L =











−t

t

t



 : t ∈ R







.

Therefore, the following set is a basis for ker L:











−1
1
1











.

Note that since ker, L 6= {~0}, L is not one-to-one.

(c) Determine whether or not L is onto.



Let

[

a

b

]

∈ R2. Notice that if u1 = a, u2 = 0 and u3 = b, then L









a

0
b







 =

[

a

b

]

.

Hence L is onto.

13. Prove Theorem 6.1(a)

Theorem 6.1(a): Let L : V → W be a linear transformation. Then L( ~0V ) = ~0W .

Proof: Recall that ~0v + ~0V = ~0V . Then L( ~0V ) = L( ~0V + ~0V ) = L( ~0V ) + L( ~0V ), where the last equality uses property
(a) of linear transformations.

Then L( ~0V )− L( ~0V ) = L( ~0V ) + L( ~0V )− L( ~0V ). So ~0W = L( ~0V ). 2.

14. Prove Theorem 6.4(b)

Theorem 6.4(b): Let L : V → W be a linear transformation. L is one-to-one if and only if ker L = { ~0V }.

Proof:

First, suppose that L is one-to-one. Let ~v ∈ ker L. Then L(~v) = ~0W . Recall from Theorem 6.1(a) above that
L( ~0v) = ~0W . Therefore, since L is one-to-one, we must have ~v = ~0v. Hence ker L = { ~0V }.

Next, suppose that ker L = { ~0V }. Suppose L(~v1) = L(~v2) for some v1, v2 ∈ V . Then, subtracting, L(~v1)−L(~v2) = ~0w.
That is, using Theorem 6.1(b), L(~v1 − ~v2) = ~0w. Therefore, ~v1 − ~v2 is an element of ker L. Hence, since ker L = { ~0V },
we must have ~v1 − ~v2 = ~0V , so ~v1 = ~v2. Thus L is one-to-one. 2.

15. Given a linear transformation L : V → W , suppose that dimV = n and dimW = m with m > n.

(a) Could L be one-to-one? Justify your answer.

Yes. Recall that L is one-to-one if and only if ker L = { ~0V }. Also, dim(ker L) + dim(rangeL) = dimV = n.
Since dimW = m > n, it is possible to have dim(rangeL) = n. This would make dim(ker L) = 0, and hence L

would be one-to-one.

(b) Could L be onto? Justify your answer.

No. Recall that L is onto if and only if rangeL = W . Then we must have dim(rangeL) = dimW = m.
However, the maximum possible value for dim(rangeL is n. Since dimW = m > n, it is not possible to have
dim(rangeL) = n. Hence L cannot be onto.

(c) Could L be invertible? Justify your answer.

No. Recall that L is invertible if and only if L is both one-to-one and onto. We showed in part (b) above that L
cannot be onto. Hence L is not invertible.

16. Consider the matrix:

[

4 −1
3 0

]

(a) Find the characteristic polynomial for each of this matrix.

Notice that if A =

[

4 −1
3 0

]

, then λI2 −A =

[

λ− 4 1
−3 λ

]

.

Then det(λI2 −A) = (λ− 4)λ+ 3 = λ2 − 4λ+ 3.

Thus p(λ) = λ2 − 4λ+ 3 is the characteristic polynomial for this matrix.

(b) Find the eigenvalues for this matrix.

Notice that p(λ) = λ2 − 4λ+ 3 = (λ− 1)(λ− 3). Therefore, the eigenvalues are the solutions to the characteristic
equation p(λ) = 0. That is, solutions to (λ− 1)(λ− 3) = 0

Hence the eigenvalues are λ = 1 and λ = 3.



(c) For each eigenvalue, find an associated eigenvector.

To find eigenvectors for each eigenvalue, we substitute each eigenvalue into the matrix λI2 −A and then find the
null space of the substituted version of the matrix.

If we take λ = 1, then λI2 −A =

[

−3 1
−3 1

]

After adding an augmented row of zeros and then putting into reduced row echelon form, we obtain:

[

1 − 1

3
0

0 0 0

]

.

Hence, we have x1 = 1

3
x2 and x2 is free, so let x2 = t.

Then the eigenvectors associated with this eigenvalue are all of the form:

{[

1

3
t

t

]}

. For example, if we set t = 3,

one possible eigenvector is ~x =

[

1
3

]

If we take λ = 3, then λI2 −A =

[

−1 1
−3 3

]

After adding an augmented row of zeros and then putting into reduced row echelon form, we obtain:

[

1 −1 0
0 0 0

]

.

Hence, we have x1 = x2 and x2 is free, so let x2 = t.

Then the eigenvectors associated with this eigenvalue are all of the form:

{[

t

t

]}

. For example, if we set t = 1,

one possible eigenvector is ~x =

[

1
1

]

17. Consider the matrix:





−1 0 1
0 3 −1
0 1 0





(a) Find the characteristic polynomial for each of this matrix.

Notice that if A =





−1 0 1
0 3 −1
0 1 0



, then λI3 −A =





λ+ 1 0 −1
0 λ− 3 1
0 −1 λ



.

Then (using Maple to save a little work) det(λI3 −A) = λ3 − 2λ2 − 2λ+ 1.

Thus p(λ) = λ3 − 2λ2 − 2λ+ 1 is the characteristic polynomial for this matrix.

(b) Find the eigenvalues for this matrix.

Notice that p(λ) = λ3 − 2λ2 − 2λ+ 1 = (λ+ 1)(λ2 − 3λ+ 1). Therefore, the eigenvalues are the solutions to the
characteristic equation p(λ) = 0.

Hence the eigenvalues are λ = −1 and λ = 3

2
±

√

5

2
, where the last two come from applying to the quadratic portion

of the factored form of p(λ).

(c) For each eigenvalue, find an associated eigenvector.

To find eigenvectors for each eigenvalue, we substitute each eigenvalue into the matrix λI3 −A and then find the
null space of the substituted version of the matrix.

If we take λ = −1, then λI3 −A =





0 0 −1
0 −4 1
0 −1 −1





After adding an augmented row of zeros and then putting into reduced row echelon form, we obtain:





0 1 0 0
0 0 1 0
0 0 0 0



.

Hence, x1 is free, x2 = 0, and x3 = 0. so let x1 = t.



Then the eigenvectors associated with this eigenvalue are all of the form:











t

0
0











. For example, if we set t = 1,

one possible eigenvector is ~x =





1
0
0





If we take λ = 3

2
+

√

5

2
, then λI3 −A =







5

2
+

√

5

2
0 −1

0 − 3

2
+

√

5

2
1

0 −1 3

2
+

√

5

2







After adding an augmented row of zeros and then putting into reduced row echelon form, we obtain:





1 0 −2

5+
√

5
0

0 1 2
√

5+3
0

0 0 0 0



.

Hence, x3 is free, x1 = 2

5+
√

5
, and x2 = −2

√

5+3
. so let x3 = t.

Then the eigenvectors associated with this eigenvalue are all of the form:











t · 2

5+
√

5

t · −2
√

5+3

t











. For example, if we

set t = 1, one possible eigenvector is ~x =





2

5+
√

5
−2

√

5+3

1





If we take λ = 3

2
−

√

5

2
, then λI3 −A =







5

2
−

√

5

2
0 −1

0 − 3

2
−

√

5

2
1

0 −1 3

2
−

√

5

2







After adding an augmented row of zeros and then putting into reduced row echelon form, we obtain:





1 0 2

−5+
√

5
0

0 1 −2
√

5+3
0

0 0 0 0



.

Hence, x3 is free, x1 = −2

−5+
√

5
, and x2 = 2

√

5+3
. so let x3 = t.

Then the eigenvectors associated with this eigenvalue are all of the form:











t · −2

−5+
√

5

t · 2
√

5+3

t











. For example, if we

set t = 1, one possible eigenvector is ~x =





−2

−5+
√

5
2

√

5+3

1






