Math 327 Linear Independence

Recall: If $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}}$ is a set of vectors in a vector space V, then the set of all vectors in V that are linear combinations of the vectors in S is denoted by span S or $span\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}\}\$. If $spanS = V$, then we say that S spans V or that V is spanned by S .

Definition: A set of vectors $S = {\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}}$ drawn from the vector space V is said to be **linearly dependent** if there exist constants a_1, a_2, \cdots, a_k not all zero so that \sum k $j-1$ $a_j \vec{v_j} = a_1 \vec{v_1} + a_2 \vec{v_2} + \cdots + a_k \vec{v_k} = \vec{0}.$

Otherwise, we say that the set S is linearly independent. In this case, if \sum k $j-1$ $a_j \vec{v}_j = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots + a_k \vec{v}_k = \vec{0}$, then we

must have that $a_1 = a_2 = \cdots = a_k = 0$.

Example:

Theorem 4.5: Let $S = {\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}}$ be a set of *n* vectors in R^n (or R_n). Let A be the matrix whose columns (rows) are the elements of S. Then S is linearly independent if and only if $det(A) \neq 0$.

Proof: We prove the case where $V = Rⁿ$. The case for R_n is similar.

Suppose that S is linearly independent. Then the reduced row echelon form of A must be I_n and hence $det(A) \neq 0$ (another way to see this is to note this if $det(A) = 0$, then the related homogeneous system of equations must have a non-trivial solution, but that would give a non-trivial linear combination of the elements of A whose sum is equal to $\vec{0}$.)

Conversely, if $det(A) \neq 0$, then we know that the reduced row echelon form of A is equivalent to I_n . But then the related homogeneous system of equations has only the trivial solution. Hence there is no non-trivial linear combination of the columns of A that is equal to $\overline{0}$. Hence S is linearly independent. \Box

Example:

Theorem 4.6: Let V be a vector space and suppose that S_1 and S_2 are subsets of V with $S_1 \subset S_2$. The the following both hold:

- (a) If S_1 is linearly dependent then so is S_2 .
- (b) If S_2 is linearly independent then so is S_1 .

Proof: Let $S_1 = \{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}\}$ and let $S_2 = \{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}, \vec{v_{k+1}}, \cdots, \vec{v_m}\}$.

(a) Suppose that S_1 is linearly dependent. Then there exist constants a_1, a_2, \dots, a_k not all zero so that \sum k $j-1$ $a_j \vec{v_j} = \vec{0}$. Then,

is we take $a_{k+1} = \cdots = a_m = 0$, then $\sum_{n=1}^{m}$ $j-1$ $a_j \vec{v_j} = \vec{0}$, and at least one of the a_i for $i = 1, 2, \dots k$ is nonzero. Hence S_2 is linearly dependent.

(b) Now suppose that S_2 is linearly independent. Then suppose \sum k $j-1$ $a_j \vec{v}_j = \vec{0}$. If we take $a_{k+1} = \cdots = a_m = 0$, then, as

before, $\sum_{n=1}^{\infty}$ $j-1$ $a_j \vec{v}_j = \vec{0}$. Therefore, since S_2 is linearly independent, we must have $a_1 = a_2 = \cdots = a_m = 0$. But then a_i for $i = 1, 2, \dots k$ in the original sum. Hence S_1 is also linearly independent. \Box

Notes:

- 1. The set $S = \{\vec{0}\}\$ is linearly dependent since $a_1\vec{0} = \vec{0}$ for any $a_1 \in \mathbb{R}$.
- 2. From this and the theorem above, if $\vec{0} \in S$, then S is linearly dependent.
- 3. If $S = {\vec{v}}$ for any ${\vec{v}} \neq {\vec{0}}$, then S is linearly independent (since for all $a \in \mathbb{R}$, $a \neq 0$, we have $a{\vec{v}} \neq {\vec{0}}$.

Theorem 4.7: A set of non-zero vectors $S = {\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}}$ in a vector space V are linearly dependent if and only if one of the vectors $v_j, j \geq 2$ is a linear combination of the set of preceding vectors: $\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_{j-1}}\}$.

Proof: Suppose that $\vec{v}_j = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots + a_{j-1} \vec{v}_{j-1}$. Since $\vec{v}_j \neq \vec{0}$, at least one $a_i \neq 0$. Then $a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots + a_{j-1} \vec{v}_{j-1} - \vec{v}_j =$ 0. Consequently, the set ${\lbrace \vec{v_1}, \vec{v_2}, \cdots, \vec{v_j} \rbrace}$ is linearly dependent. Thus, either $j = k$ and S is linearly dependent, or we may apply Theorem 4.6(a) to $S_1 = \{v_1^1, v_2^2, \cdots, v_j^r\}$ and conclude that S is also linearly dependent.

Conversely, suppose that S is linearly dependent. Then $a_1 v_1 + a_2 v_2 + \cdots + a_k v_k = \vec{0}$ with at least one $a_i \neq 0$. Let j be the largest index such that $a_j \neq 0$. Since all vectors in S are non-zero, we must have $j \geq 2$. Therefore, $a_1 v_1^2 + a_2 v_2^2 + \cdots + a_j v_j^2 = 0$, so $a_1 \vec{v_1} + a_2 \vec{v_2} + \cdots + a_{j-1} \vec{v_{j-1}} = -a_j \vec{v_j}$. Since $a_j \neq 0$, we may divide by $-a_j$ to obtain:

$$
v_j = -\frac{a_1}{a_j}\vec{v_1} - \frac{a_2}{a_j}\vec{v_2} + \cdots - \frac{a_{j-1}}{a_j}\vec{v_{j-1}} \cdot \square
$$

Now that we understand the concepts of span and linear independence, we can make the following definition:

Definition: A set of vectors $S = \{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}\}$ in a vector space V forms a **basis** for V if both of the following hold:

(a) $spans = V$ (that is, the vector space V is spanned by the set S)

(b) S is a linearly independent set.

Notes:

- 1. If $S = \{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}\}$ is a basis for a vector space V, then the v_i 's must be distinct and non-zero.
- 2. One can extend the definition of a basis to allow an infinite set S (provided (a) and (b) are still satisfied).